Цент вписанно йокружности это точка перечечения биссектрисс
а в случае равнобедренного тр-ка - это точка, где биссектриса пересекает высоту. Высота равна 8, и делит равнобедренный треугольник на 2 равных прямоугольных треугольника, у которых гипотенуза (боковая сторона исходного тр-ка) относится к катету (половине основания исходного тр-ка), как 5/3 - по свойству биссектрисы.
Поэтому эти прямоугольные треугольники подобны треугольнику со сторонами 3,4,5, то есть "египетскому". Раз высота 8, то две другие стороны 6 и 10, то есть в равнобедренном треугольнике боковые стороны равны 10, а основание 6*2 = 12.
Даны : А(2,1,0), М(3,-2,1), N(2,-3,0).
Находим координаты направляющего вектора прямой NM:
NM: (1; 1; 1).
Принимаем координаты направляющего вектора прямой NM как соответствующие координаты нормального вектора n плоскости α :
n = (A; B; C). То есть, A = 1, B = 1, C = 1.
Записываем уравнение плоскости, проходящей через точку А(2; 1; 0) и имеющей нормальный вектор n(A; B; C), в виде:
A(x -x1) + B(y - y1) + C(z - x1) - это и есть искомое уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.
Подставляем данные -
α: 1(x -2) + 1(y - 1) + 1z = x + y + z - 3 = 0.
ответ: уравнение плоскости α: x + y + z - 3 = 0.