а) В правильном треугольнике центры вписанной и описанной окружностей - точка пересечения медиан (биссектрис, высот, так как они совпадают).
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. При этом больший отрезок высоты является радиусом описанной окружности, а меньший - вписанной.
r = h/3
R = 2h/3
б) Формулы, связывающие сторону правильного многоугольника с радиусами вписанной и описанной окружностей:
a(n) = 2r · tg(180°/n)
a(n) = 2R · sin(180°/n)
где a(n) - сторона правильного многоугольника, n - количество его сторон.
n = 5
r = a / (2tg36°)
R = a / (2sin36°)
в) n = 6
r = a / (2tg30°) = a√3/2
R = a / (2 sin30°) = a /(2 · 1/2) = a
По теореме Пифагора:
ВЕ² + ВD² = ED²
16² + 12² = 20²
256 + 144 = 400
400 = 400
Площадь прямоугольного треугольника равна половине произведения катетов
S = 1/2 × BE × BD = 1/2 × 16 × 12 = 96 см²
ОТВЕТ: 96 см²