Стороны треугольника равны 6, 25 и 29. Найти радиус окружности, проходящей через середины сторон этого треугольника. Окружность проходит через середины сторон треугольника. Следовательно она является описаной окружностью для треугольника составленного из средних линий (отрезков соединяющих середины сторон треугольника) исходного треугольника Длины средних линий найти просто это половина сторон исходного треугольника . Исходный треугольник 6, 25, 29 Треугольник из средних линий 3; 12,5; 14,5. Радиус описанной окружности определяется по формуле R =a*b*с/(4корень(p(p-a)(p-b)(p-c))). где p=(a+b+с)/2 У нас а=3;b=12,5; c=14,5 p =(3+12,5+14,5)/2=30/2=15 Находим радиус R =3*12,5*14,5/(4*корень(15(15-3)(15-12,5)(15-14,5)))= = 543,75/(4*корень(15*12*2,5*0,5))= 543,75/(4*15)=9,0625
По условию, вd=11.3 см, и он является катетом в прямоуг. треугольнике bdc. гипотенуза этого треугольника (bd) в 2 раза меньше катета=> по свойству прямоугольного треугольника если катет в 2 раза меньше гипотенузы то острый угол напротив этого катета равен 30 градусам. то есть > с равен 30 градусам. так как авс равнобедренный, углы при основании равны то есть < а=< с=30 градусов. мы знаем, что сумма углов треугольника равна 180. тогда < а=180-30-30=120 градусов. ответ: < вас=30 < вса=30 < авс=120
якщо рівних сторін немає, то трикутник загального виду,
щоб визначить тип трикутника необхідно порівняти квадрат найдовшої сторони з сумою квадратів двох інших сторін:
7² + 2² < 8²,
49 + 4 < 64,
53 < 64,
так як квадрат найдовшої сторони виявився більшим числом, то заданий трикутник - тупокутний