1- Сумма углов n-угольника равна 180°(n − 2) 2-Параллелогра́мм это четырёхугольник, у которого противоположные стороны параллельны, т.е. лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник,квадрат и ромб. Св-ва: Противоположные стороны параллелограмма равны. Противоположные углы параллелограмма равны. Сумма углов, прилежащих к одной стороне, равна 180°. Диагонали параллелограмма пересекаются, и точка пересечения делит их пополам. Параллелограмм диагональю делится на два равновеликих треугольника. 3- Трапеция – четырёхугольник, у которого две стороны параллельны, а две другие – нет. Параллельные стороны называются основаниями, а непараллельные – боковыми сторонами. Если боковые стороны трапеции равны, то она называется равнобедренной или равнобокой. 4- Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам) Св-ва: Прямоугольник является параллелограммом — его противоположные стороны попарно параллельны. Стороны прямоугольника являются его высотами. Около любого прямоугольника можно описать окружность, причем диагональ прямоугольника равна диаметру описанной окружности (радиус равен полудиагонали). 5- Ромб — это параллелограмм, у которого все стороны равны. Ромб с прямыми углами называется квадратом. Св-ва: Ромб является параллелограммом, поэтому его противолежащие стороны равны и попарно параллельны. Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. Тем самым диагонали делят ромб на четыре прямоугольных треугольника. Диагонали ромба являются биссектрисами его углов . 6- Квадрат — правильный четырёхугольник, то есть четырёхугольник, у которого все углы и стороны равны. Св-ва: Равенство длин сторон. Все углы квадрата прямые. Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и являются биссектрисами углов.
1- Сумма углов n-угольника равна 180°(n − 2) 2-Параллелогра́мм это четырёхугольник, у которого противоположные стороны параллельны, т.е. лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник,квадрат и ромб. Св-ва: Противоположные стороны параллелограмма равны. Противоположные углы параллелограмма равны. Сумма углов, прилежащих к одной стороне, равна 180°. Диагонали параллелограмма пересекаются, и точка пересечения делит их пополам. Параллелограмм диагональю делится на два равновеликих треугольника. 3- Трапеция – четырёхугольник, у которого две стороны параллельны, а две другие – нет. Параллельные стороны называются основаниями, а непараллельные – боковыми сторонами. Если боковые стороны трапеции равны, то она называется равнобедренной или равнобокой. 4- Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам) Св-ва: Прямоугольник является параллелограммом — его противоположные стороны попарно параллельны. Стороны прямоугольника являются его высотами. Около любого прямоугольника можно описать окружность, причем диагональ прямоугольника равна диаметру описанной окружности (радиус равен полудиагонали). 5- Ромб — это параллелограмм, у которого все стороны равны. Ромб с прямыми углами называется квадратом. Св-ва: Ромб является параллелограммом, поэтому его противолежащие стороны равны и попарно параллельны. Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. Тем самым диагонали делят ромб на четыре прямоугольных треугольника. Диагонали ромба являются биссектрисами его углов . 6- Квадрат — правильный четырёхугольник, то есть четырёхугольник, у которого все углы и стороны равны. Св-ва: Равенство длин сторон. Все углы квадрата прямые. Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и являются биссектрисами углов.
75см
Объяснение:
По теореме косинусов найдём неизвестную сторону треугольника. Обозначим её х.
35² = 15² + х² - 2 · 15 · х · сos 120°
1225 = 225 + x² - 30x · (-1/2)
x² + 15x - 1000 = 0
D = 225 + 4000 = 4225
√D = 65
x1 = 0.5(-15 - 65) < 0 не подходит по физическому смыслу
х2 = 0,5(-15 + 65) = 25(см)
Периметр треугольника Р = 35 + 15 + 25 = 75(см)