ответ: V=72π(см³); Sпол=271,296см²
Объяснение: зная высоту и площадь основания конуса сразу можно найти его объем по формуле: V=⅓×Sосн×h=
=⅓×36π×6=72π(см³)
Найдём радиус окружности, используя формулу обратную формуле площади:
Sосн=πr²
r²=36π÷π=36; r=√36=6см
Радиус и высота конуса образуют прямоугольный треугольник в котором радиус и высота являются катетами а образующая гипотенузой. Этот треугольник равнобедренный, поскольку высота и радиус равны 6см, а в таком треугольнике гипотенуза будет больше катета в √2 больше. Поэтому образующая L=6√2см
Теперь найдём площадь боковой поверхности конуса по формуле:
S=πrL=π×6×6√2=36π√2(см²)
Теперь найдём площадь полной поверхности конуса, зная площадь боковой поверхности и площадь основания:
Sпол=Sосн+Sбок.пов=36π+36π√2=
=36×3,14+36×3,14×1,4=271,296см²
P=54 см Одну частину приймаємо за х, тоді друга сторона -7х,третя 3х, четверта-2х(7х-3х=4х:2=2х) 18+7х+3х+2х=54 12х=36 х=3 3-одна частина 3•7=21-друга сторона 3•3=9-третя сторона 3•2=6-четверта сторона