(Чертеж во вложении)
Опустим из цетра окружности перпендикуляры к катетам, получится прямоугольник ОДВН
(т к ОН перпендикулярна НВ и ВД перпендикулярна НВ, ОД перпендикулярна ВД)
В нем диагональ ОВ равна радиусу окр., а стороны ОН и ОД расстояния от центра до катетоа => ОН=2ОД, пусть НВ=ОД=х, ВД=ОН=2х,
Рассмотрим прямоугольный треугольник ОДВ по т пифагора
Но нам известно, что перпендикуляр проведенный из центра окружности к катетам вписанного в нее треугольника делит катеты на 2 => ВС=2*ВД=20
АВ=НВ*2=10
ответ 10, 20
Пусть ∠А = 《х》, тогда ∠В = 《х+12》:
1) х+х+12=180
2х+12=180
2х=180-12
2х=168
х=168:2
х=84
2) 84+12=96
ответ: ∠В = 96°