∠ 1 = ?°, на 55° больше, чем ∠ 2.
∠ 2 = ?°
Оба угла являются смежными.
Решение:Пусть x° равен смежный ∠ 2, тогда ∠ 1 равен (55+x)˚. Зная, что свойство смежных углов всегда содержит сумму 180°, составим уравнение с переменными и решим задачу алгебраическим
Составление математической модели:
Работа с математической моделью:
Поскольку уравнение имеет переменные, раскроем скобки и найдём значение переменных:
Теперь, зная что число с переменной и число без переменной в данном случае вычислить невозможно, перенесем число без переменной в правую часть уравнения (число становится отрицательным):
Затем вычислим полученный пример, находящийся в правой части уравнения:
Чтобы найти неизвестный множитель, необходимо произведение разделить на известный множитель:
ответ математической модели:
Исходя из значения данного примера, получим корень уравнения:
˚ - ∠ 2.
Теперь остаётся только узнать величину ∠ 1:
˚ - ∠ 1.
9 см
Объяснение:
1) Рассмотрим ΔАВО
∠А пополам делит биссектриса АС ⇒ ∠ВАС = ∠А : 2 и ∠ВАС = ∠САD
∠ВАС = 120 : 2 = 60°
∠АОB = 90° (т.к. в ромбе биссектрисы перпендикулярны)
и чтобы найти ∠АВО = 180°- ∠ВОА - ∠ВАО (по теореме о сумме углов треугольника)
∠АВО = 180° - 60° - 90° = 30°
2) Катет, лежащий против угла, величина которого равна 30°, равен половине гипотенузы. В ΔАВО, АВ - гипотенуза, равная 9 см, а АО - катет, лежащий против угла 30°. Следовательно, АО = 9:2 = 4,5 см
3) Ромб является параллелограммом, а мы знаем, что в параллелограмме, диагонали точкой пересечения делятся пополам ⇒ АС = АО + ОС и АО = ОС = 4,5
АС = 4,5 + 4,5 = 9 см
Средняя линия трапеции равна 12, 5 см.