Для любого выпуклого четырехугольника отрезки, соединяющие середины смежных сторон этого четырехугольника, образуют параллелограмм. Для этого проведем одну из диагоналей: она разбивает четырехугольник на два треугольника, средние линии которых равны и параллельны, (как средние линии параллельные основанию, равные половине диагонали), и эти две средние линии являются противоположными сторонами искомого параллелограмма. Для второй диагонали - проделываем то же самое. В итоге, в равнобедренной трапеции диагонали равны, а значит равны и все стороны искомого параллелограмма, который поэтому и является ромбом.
Высота, проведенная из тупого угла равнобедренной трапеции, делит ее большее основание на ДВА отрезка, один из которых (больший), равен полусумме оснований, а второй (меньший) - их полуразности. Так как нам даны эти два отрезка, то их сумма - это большее основание. Итак, большее основание равно 8+26=34 см. Если полуразность оснований равна 8 см, а большее основание равно 34 см, тогда меньшее основание равно 34-2*8=18 см. ответ: в данной нам трапеции большее основание равно 34см, а меньшее - 18см.
АОД = 4х
х+4х=40
5х=40
х=8
ДОБ = 8°
АОД = 4*8=32°