В равнобедренном треугольнике биссектриса и высота, проведённые к основанию, совпадают. Пусть в равнобедренном треугольнике ABC с основанием AC проведены биссектрисы AA1,BB1,CC1. Точка O является точкой пересечения биссектрис AA1 и CC1. Так как биссектрисы треугольника пересекаются в одной точке, BB1 проходит через точку O. Так как биссектриса и высота, проведённые к основанию, совпадают, BB1 - высота. Тогда BB1 перпендикулярна AC. Так как точка O лежит на отрезке BB1, прямая BO и прямая BB1 совпадают (это одна и та же прямая, которую можно назвать по-разному). Значит, прямая BO перпендикулярна AC, что и требовалось доказать.
∠A=∠C
Все стороны ромба равны.
AD=CD
AB/2=BC/2 <=> AM=CK
△MAD=△KCD (по двум сторонам и углу между ними).
MD=KD