пусть х-коэффициент отношения. Хорды КМ, МN, KN стягивают соответственные дуги. Тогда дуга КМ=6х, дуга MN=5x, дуга NK=7x,
6х+5х+7х=360градусов, 18х=360град, х=20 град.
дуга КМ=6*20=120град, дуга MN =5*20=100 град, дуга NK=7*20=140 град
угол между касательными, проведёнными из одной точки равен половине разности большей и меньшей дуг, находящихся между сторонами угла, поэтому
угол В=дуга КNM-дуга KM=(140+100-120):2=60град
угол С=дугаNKM-дугаNM=(120+140-100):2=80град
угол А=дуга NMK-дуга NK=(100+120-140):2=40град
2)каждая хорда делится двумя точками на 3 равные части, значит они равны между собой. 12:3=4 см каждая часть Периметр треугольника КМN=3*4=12
как то так
вторую незнаю
Объем пирамиды равен одной трети произведения ее высоты на площадь основания.
V=⅓ S∙h
Основание правильного шестиугольника состоит из шести правильных треугольников.
Площадь правильного треугольника находят по формуле:
S=(а²√3):4
S=4√3):4=√3
Площадь правильного шестиугольника в основании пирамиды:
S=6√3
Высоту найдем из прямоугольного треугольника АВО:
Так как ребро образует с с диагональю основания угол 60°, высота пирамиды ВО равна
H=ВО=2:ctg (60°)= 2·1/√3=2√3
Можно найти высоту и по т. Пифагора с тем же результатом.
V= 2√3∙6 √3:3=12 (кубических единиц)
Подробнее - на -
Объяснение:
Пусть пирамида РАВСД расположена точкой О в начале координат, АВ параллельно оси Ох. Так как стороны по 1, то диагональ основания равна √2. В сечении АРС получаем прямоугольный равнобедренный треугольник. Высота пирамиды Н = √2/2.
Определяем координаты вершин.
А(0,5; -0,5; 0),
В(-0,5; -0,5; 0),
С(-0,5; 0,5; 0),
Д(0,5; 0,5; 0),
Р(0 ; 0; √2/2).