где CD – биссектриса угла C, которую нужно найти. Для решения задачи нужны дополнительные построения. Добавим точку E, лежащую на AB, такую, чтобы: EB = BC то есть △ECB является равнобедренным. Рассмотрим этот треугольник. Угол ∠B в нем равен 20°, значит: ∠ECB = ∠CEB = (180° – 20°) / 2 = 80° Рассмотрим треугольник △ACB. Углы ∠A и ∠B известны, значит: ∠C = 180° – 20° – 40° = 120° А половина ∠C равна: ∠ACD = ∠BCD = 120°/2 = 60° Рассмотрим треугольник △ACD. Углы ∠A и ∠ACD известны, значит: ∠ADC = 180° – 40° – 60° = 80° Рассмотрим треугольник △ECD. Углы ∠CED (=∠CEB) и ∠CDE (=∠ADC) равны, значит треугольник является равнобедренным и: EC = CD ∠ECD = 180° – 80° – 80° = 20° Рассмотрим треугольник △ACE. Угол ∠A известен, угол ∠ACE можно получить как разницу углов ∠ACD и ∠ECD: ∠ACE = 60° – 20° = 40° Заметим, что ∠ACE равен ∠A, то есть треугольник △ACE также равнобедренный: AE = EC Осталось вычислить искомую биссектрису CD: CD = EC = AE = AB – EB = AB – BC = 4 ОТВЕТ: 4
1. Рассмотрим прямоугольный треуг-ик ABD. Здесь катет АВ, лежащий против угла в 30°, равен половине гипотенузы AD: AB=1/2AD, AD=2AB Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, находим угол А: <A=90-<ADB=90-30=60° Угол D в трапеции ABCD равен: <D=30+30=60° Углы при основании трапеции равны, значит, она равнобедренная, и АВ=CD. Рассмотрим треугольник BCD. <CBD=<ADB как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей BD. <CDB=30°, значит треугольник BCD равнобедренный, поскольку углы при его основании BD равны. ВС=CD. Но CD=AB, значит ВС=CD=AB Таким образом мы можем принять АВ, ВС, CD за х, а AD - за 2х (т.к. AD=2AB см. выше). Зная периметр, запишем: AB+BC+CD+AD=P x+x+x+2x=60 5x=60x=12 AD=2*12=24 см
2. Рассмотрим прямоугольный треуг-ик АЕВ. Он равнобедренный по условию (диагональ ВЕ равна стороне АЕ, она будет равна и стороне ВС). В равнобедренном треуг-ке углы при основании равны. Найдем их: <A=<ABE=(180-<AEB):2=(180-90):2=45° Поскольку противоположные углы параллелограмма равны, то <C=<A=45° <ABC=<AEC=90+<ABE=90+45=135°
Сумма углов треугольника АВС равна 180° Значит ∠1= 180°-48°-56°=76° Смежный с ним угол 180°-76°=104° Треугольник ВСЕ равнобедренный, угол при вершине 104°, значит на два других равных угла приходится 76°, а на кждый угол 76°:2=38° Угол 3 смежный с углом в 48°, значит ∠3 = 180° - 48°=132° Треугольник DAB - равнобедренный, угол при вершине 132°, значит на два других угла приходится 48°, на каждый угол 24° Итак, ∠ BDE= 24° ∠BED = 38° ∠DBE = 180°- 24°-38°=118° Или по другому как сумма трех углов. ∠DBE =56°+ 24°+38°=118° ответ. 24°;38°;118°
где CD – биссектриса угла C, которую нужно найти. Для решения задачи нужны дополнительные построения. Добавим точку E, лежащую на AB, такую, чтобы: EB = BC то есть △ECB является равнобедренным. Рассмотрим этот треугольник. Угол ∠B в нем равен 20°, значит: ∠ECB = ∠CEB = (180° – 20°) / 2 = 80° Рассмотрим треугольник △ACB. Углы ∠A и ∠B известны, значит: ∠C = 180° – 20° – 40° = 120° А половина ∠C равна: ∠ACD = ∠BCD = 120°/2 = 60° Рассмотрим треугольник △ACD. Углы ∠A и ∠ACD известны, значит: ∠ADC = 180° – 40° – 60° = 80° Рассмотрим треугольник △ECD. Углы ∠CED (=∠CEB) и ∠CDE (=∠ADC) равны, значит треугольник является равнобедренным и: EC = CD ∠ECD = 180° – 80° – 80° = 20° Рассмотрим треугольник △ACE. Угол ∠A известен, угол ∠ACE можно получить как разницу углов ∠ACD и ∠ECD: ∠ACE = 60° – 20° = 40° Заметим, что ∠ACE равен ∠A, то есть треугольник △ACE также равнобедренный: AE = EC Осталось вычислить искомую биссектрису CD: CD = EC = AE = AB – EB = AB – BC = 4 ОТВЕТ: 4