Строим треуг АВС. Из точки В проводим перпендикуляр ВD. Соединяем AD и CD. Получили пирамиду, BD-перпендикуляр к основанию АВС. Грани ABD и CBD являются прямоугольными треуг-ми. У треуг. ABD и CBD катет DB-общий, катеты АВ=ВС по условию, значит треуг-ки ABD=CBD по двум катетам, тогда AD=CD, следовательно треуг. ADC равнобедренный. Найдем AD^2=АВ^2+DB^2=625+15=640DO-высота, проведенная к основанию АС, ана же и медиана и искомое расстояние от точки D до прямой АС.Так как DO медиана, то АО=48/2=24смDO=√(AD^2-AO^2)=√(640-576)=8смответ 8см
1. На прямой а откладываем отрезок АВ. Из точки В конца отрезка циркулем проводим окружность произвольным радиусом (около половины длины отрезка АВ). Из точки М пересечения отрезка АВ с окружностью этим же радиусом проводим засечки (пересечение дуг окружности) с обоих сторон отрезка АВ. Соединив эти засечки, получим прямую, перпендикулярную отрезку АВ, а, значит, и данной прямой. 2. Проделав предыдущую операцию на втором конце отрезка (А), получим второй перпендикуляр к прямой АВ. Отложим на полученных перпендикулярах с одной стороны отрезка АВ циркулем отрезки равной длины. Соединив полученные точки, получим прямую, параллельную прямойАВ. 3. Чертим окружность с центром О. Через центр этой окружности проводим прямую а. Продолжаем эту прямую за точку М пересечения с окружностью и на этом продолжении от точки пересечения М откладываем отрезок МА, равный радиусу нашей окружности. Теперь из центра О нашей окружности и из точки конца А, отрезка МА, радиусом, большим радиуса нашей окружности, делаем засечки с обоих сторон прямой. Соединив эти две засечки, получим прямую b, перпендикулярную нашей прямой в точке пересечения ее с нашей окружностью и делящую пополам отрезок ОА, то есть касательную к нашей окружности. 4. На прямой откладываем циркулем отрезок АВ, равный одной из данных сторон. Из точек концов этого отрезка радиусами R и R1, равными длинам двух других сторон проводим засечку (пересечение дуг окружностей этих радиусов). Соединив полученную точку отсечки с концами первого отрезка, получим искомый треугольник. 5. На прямой a откладываем отрезок АВ, равный данной нам стороне. Из точки конца этого отрезка откладываем угол, равный данному α, совместив одну из его сторон с полученным отрезком. На второй стороне угла откладываем отрезок, равный второй данной нам стороне. Соединив точки концов первого ивторого отрезков, получим искомый треугольник.
сторона квадрата а=5, потому что площадь это квадрат стороны ( s=a²)
диагональ (d) равна √5²+5²
d=√50
d=5√2