ответ: 4
Очевидно, что ABC - правильный треугольник.
Из формул зависимости стороны от радиуса вписанной окр. и зависимости высоты от стороны в правильном треугольнике, можно легко вывести зависимость между непосредственно высотой радиусом вписанной окружности:
r=h/3.
проведем касательную к меньшей и большей окружности обозначим точки ее пересечения с AB и AC, как M и N. Также проведем диаметр к стороне BC(он будет совпадать с высотой), тогда оставшаяся часть равна 12. И эта часть является высотой правильного треугольника AMN(т.к. MN и BC параллельны, след. AMN=ANM=BAC=60, след. AMN-правильный). Значит для него работает наша формула r=12/3=4.
Объяснение:
ответ: 120,7м; 60,35м
Объяснение:
Сам монумент, расстояние от точки А до основания монумента и расстояние от точки А до самой высокой точки образуют прямоугольный треугольник.
Высота монумента является катетом, расстояние от основания до точки А вторым катетом, а расстояние от точки А до вершины монумента гипотенузой.
Для того чтобы найти расстояние от точки А до вершины, нужно выстоу монумента разделить на sin60° и получим:
105/0,87=120,7м
Для нахождения расстояния от основания монумета до точки А, нужно расстояние от точки А до самой высокой точки умножить на cos60°: 120,7*0,5=60,35м