Пусть точкой пересечения СК и BK будет точка О. В треугольнике CBL точка О лежит на середине гипотенузы BL и является центром описанной окружности треугольника. Следовательно BO=CO и треугольник BCO - равнобедренный. Значит угол CBO равен углу BCO и равны B/2.
Т.к. CK=AC, то треугольник AKC - равнобедренный и угол CAK равен углу CKA и равны А. Значит угол АСК=180-(А+А)=180-2А.
Угол ACB=90 и равен сумме углов BCK+ACK, где ВСК=ВСО=В/2
В/2+180-2А=90 (А+В=90 => А=90-В)
В/2+180-2(90-В)=90
В/2+180-180+2В=90
5В/2=90
В=36°
ответ: угол АВС=36°.
АВСD – прямоугольник, его диагонали – диаметры описанной окружности. ⇒ угол М в треугольниках ВМD и АМС - прямой. В ∆ АМС по т.Пифагора MA²+MC²=BD²; в ∆ BMD по т.Пифагора МВ²+МD²=BD²
Сложив два уравнения, получим. МА²+МВ²+МС²+МD²=2BD² Диаметр DВ=2R, следовательно, 2BD²=2(2R)²=8R² ⇒ МА²+МВ²+МС²+МD²=8BD² Доказано.