М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vzarina576
vzarina576
08.07.2020 11:59 •  Геометрия

Впрямоугольнике abcd найдите bc если cd равно корень из 1,6 и ad равно 1,3

👇
Ответ:

ВС=АD, поэтому =√1,3

4,6(89 оценок)
Открыть все ответы
Ответ:
нася12342
нася12342
08.07.2020

Теорема о пересечении серединных перпендикуляров к сторонам треугольника

В пункте 46 мы доказали, что биссектрисы треугольника пересекаются в одной точке. Оказывается, что серединные перпендикуляры к сторонам треугольника также пересекаются в одной точке.

Теорема. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство. Обозначим буквой O точку пересечения серединных перпендикуляров c и a к сторонам AB и BC треугольника ABC (рис. 33). Докажем, что точка O лежит на серединном перпендикуляре к стороне AC.

По теореме о серединном перпендикуляре к отрезку OA = OB и OB = OC, поэтому OA = OC. Таким образом, точка O равноудалена от концов отрезка AC и, следовательно, лежит на серединном перпендикуляре b к этому отрезку. Итак, все три серединных перпендикуляра к сторонам треугольника ABC пересекаются в точке O, и эта точка равноудалена от вершин A, B и C. Теорема доказана.

Замечание. Мы начали доказательство теоремы с того, что обозначили буквой O точку пересечения серединных перпендикуляров c и a к сторонам AB и BC. А верно ли, что прямые a и c пересекаются? Докажем, что это верно.

Проведем через точку B прямые p и q, что p ⊥ AB и q ⊥ BC (рис. 34). Поскольку прямые p и c перпендикулярны к прямой AB, то p || c.

Аналогично доказывается, что q || a. Прямая p пересекает прямую q (в точке B), поэтому она пересекает и параллельную ей прямую a (см. рис. 34); прямая a пересекает прямую p, поэтому она пересекает и параллельную ей прямую c. Итак, прямая a пересекает прямую c, что и требовалось доказать.

Объяснение:

4,4(80 оценок)
Ответ:
ppdfsaf
ppdfsaf
08.07.2020

Напиши уравнение окружности, которая проходит через точку 8 на оси Ox, и через точку 4 на оси Oy, если известно, что центр находится на оси Ox.(x−...)²+y²=...²

Объяснение:

Пусть центр окружности имеет координаты О(х;0)  .

Точки принадлежащие окружности имеют координаты (8;0)  и (0;4). Их координаты удовлетворяют уравнению окружности:

(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .

(8-х)²+(0-0)²=R² , или 64-16х+х²=R²

(0-х)²+(4-0)²=R²   или  х²+16=R² .      Вычтем из 1 уравнения 2. Получим :

                                    64-16х-16=0

                                    -16х=-48

                                      х=3.  Центр имеет координаты О(3;0).

Найдем R=√( (3-0)²+(0-4)² )=5.

(x− 3)²+y²=5²

4,4(99 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ