№1. Из условия видим, что диагональ BD делит ромб на два правильные треугольника ABD и CBD. Можно по теоремме пифагора найти высоту этих треуг-ков, а затем их площадь, но для равностороннего треуг-ка есть такая формула площади:
S=(√3/4)*a^2
S=√3/4*10=2√3/5=0,7см^2
№2. Сторона правильного шестиугольника равна радиусу описанной около него окружности, поэтому r=6см.
Длина окр-ти l=2Пr=2*3,14*6=37,68см
S=Пr^2=3,14*36=113,04см^2
№3. Что-то не понял условие. Дан прямоугольный треугольник и найти радиус вписанного треугольника. Радиус вписанной окружности нужно найти.
r=S/p, где р-полупериметр. Так как острый угол 45, то катеты равны.
Пусть один катет равен х, тогда
x^2+x^2=100
2x^2=100
x^2=50
x=√50=5√2см
S=1/2*5√2*10=25√2см^2
p=(10+5√2+5√2)/2=5+5√2см
r=25√2/(5+5√2)=5√2/(1+√2)=2,93см
Sбок = 120(2+√3) см².
Объяснение:
Треугольник АВС равнобедренный (АС=ВС - дано). Его высота - перпендикуляр из вершины С к стороне АВ равен половине боковой стороны, так как лежит против угла 30°.
Итак, СН = 5 см. Расстояние от вершины С1 до стороны АВ - это перпендикуляр С1Н к стороне АВ и его проекция на основание АВС - это высота СН (по теореме о трех перпендикулярах).
Тогда в прямоугольном треугольнике СНС1 катет СС1 по Пифагору равен √(С1Н²-СН²) = √(169-25) = 12 см. Это высота нашей прямой призмы. Тогда площадь ее боковой поверхности равна периметру основания, умноженному на высоту. Учитывая, что сторона АВ равна 10√3 см (из прямоугольного треугольника САН АН = 5√3 см, а
АВ = 2·АН), Sбок = (20+10√3)·12 = 120(2+√3)см²