1.
Нарисовать окружность. Разделить ее радиусом на 6 частей. Две точки соединить с центром окружности. Соединить хордой концы раюиусов на окружности. Хорду обычным путем разделить на две равные части. Соединить с центром окружности.
2.
Можно построить прямой угол, проведя обычным перпендикуляр к прямой. Отложить на одной из сторон какой-то отрезок. Затем из свободного конца этого отрезка провести окружность радиусом больше того отрезка в два раза.
Точку пересечения окружности со второй стороной прямого угла соединить с концом первого отрезка. Получим треугольник с катетом длиной вдвое меньшей длины гипотенузы. Угол, лежащий против такого катета, будет равен 30 градусам.
Поместим единичный куб точкой В в начало координат, ВА по оси Ох, ВС - по оси Оу.
А(1; 0; 0), С(0; 1; 0), вектор АС = (-1; 1; 0), его модуль равен √2.
Д(1; 1; 0), С1(0; 1; 1), вектор АС = (-1; 0; 1), его модуль равен √2.
cos a = |(-1*-1 + 1*0 + 0*1)|/(√2*√2) = 1/2.
Угол а = 60 градусов.