Раз кт медиана, значит тн=нм. Раз кт ввстта, значит углы при точке т прямые. Тогда треугольники ктм и ктм равны по двум сторонам и прямым углам между ними, значит км и кнр равны.
1. Рассмотрим треугольники MKD и PDE 1) MD = DE по условию 2) PD = DK по условию 3) Угол MDK = углу PDE, так как они вертикальные Треугольник MKD = треугольнику PDE по 1-ому признаку равенства треугольников, значит все соответственные элементы равны и угол KMD = углу PED 2. Рассмотрим треугольники PMD и PKD 1) DM = DK по условию 2) DP - общая 3) PM = PK по условию Треугольник PMD = треугольнику PKD по третьему признаку равенства треугольников, значит все соответственные элементы равны и угол MDP = углу PDK. Тогда луч DP - биссектриса
1)Пусть х 1-а часть 2х -угол (например А) 3х- угол В 4 х угол С т. к. сумма углов =180 градусам то 2х+3х+4х=180 9х=180 х=180:9 х=20 градусов-1 часть 2*20=40 градусов угол А 3*20=60 градусов угол В 4*20 =80 градусовугол С ответ: 40,60,80 2)Сумма углов равнобедренного треугольника равна 180 град. Отсюда: Сумма двух углов у основания треугольника равна 180 _160 = 20 град. Так как углы у основания равнобедренного треугольника равны между собой, отсюда: Один угол равен 10 град. Итого углы равнобедренного треугольника равны: 160 град, 10 град, 10 град. 3)углы при основании равны, если один 70, то и второй 70, чтобы найти третий надо 180-(70+70)=40
Раз кт медиана, значит тн=нм. Раз кт ввстта, значит углы при точке т прямые. Тогда треугольники ктм и ктм равны по двум сторонам и прямым углам между ними, значит км и кнр равны.