1) D(-8; 0)
2) D(0; 4)
Пошаговое объяснение:
Уточнение задачи: Даны точки А(1; 2), B(-3; 0) и C(-4; 2). Определите координаты точки D так, чтобы выполнялось равенство для векторов:
1) AB=CD 2) AB=DC.
Определим вектор AB={-3-1; 0-2}={-4; -2}.
1) Случай AB=CD.
Пусть D(x; y). Так как направления векторов AB и CD совпадают, а длины векторов AB и CD равны, то CD={-4; -2}. С другой стороны
CD={x-(-4); y-2}={x+4; y-2}. Тогда из равенства CD={-4; -2} получим:
x+4=-4 и y-2=-2 или x= -8 и y= 0.
ответ: D(-8; 0).
2) Случай AB=DC.
Пусть D(x; y). Так как направления векторов AB и DC совпадают, а длины векторов AB и DC равны, то DC={-4; -2}. С другой стороны
DC={-4-x; 2-y}. Тогда из равенства DC={-4; -2} получим:
-4-x=-4 и 2-y=-2 или x=0 и y=4.
ответ: D(0; 4).
Объяснение:
Координаты середины отрезка ВС (точки М) находятся по формуле:
Xm = (Xc + Xb)/2, Ym = (Yc + Yb)/2. Отсюда
Xc=2*Xm-Xb или 6-(-2)=8;
Yc=2*Ym-Yb или -2-4 = -6. Значит С(8;-6).
2) В(4;-3) К(1;5)
Координаты середины отрезка ВМ (точки К) находятся по формуле:
Xk = (Xm + Xb)/2, Yk = (Ym + Yb)/2. Отсюда
Xm=2*Xk-Xb или 2-4=-2;
Ym=2*Yk-Yb или 10-(-3) = 13. Значит М(-2;13).
Тогда координаты точки С:
Xc=2*Xm-Xb или -4-4=-8;
Yc=2*Ym-Yb или 26-(-3) = 29. Значит С(-8;29).
ответ: 1) С(8;-6) 2) С(-8;29)