ответ: ∠DBE=15*.
Объяснение:
"ABCD-это ромб, а точка E находится на стороне DC так, что(<BEC) = 55°. Если m(<A)=100°, найдите m(<DBE).
Треугольник DВЕ - равнобедренный (углы у основания равны).
∠А+∠ABD+∠BDA=180*;
∠DBA=∠BDA=(180*-100*)/2=40*;
***
В треугольнике BDE ∠BDE=40*, a ∠BED=180*-55*=125*.
Значит ∠DBE=180*-(40*+125*) =15*.
ответ: ∠DBE=15*.
***
На английском:
The triangle DBE is isosceles (the angles at the base are equal).
∠A+∠ABD+∠BDA=180*;
∠DBA=∠BDA=(180*-100*)/2=40*;
***
In the triangle BDE ∠BDE=40*, a ∠BED=180*-55*=125*.
Means ∠DBE=180*-(40*+125*) =15*.
Answer: ∠DBE=15*.
Пусть AB - x, тогда OA и OB = 2,5 x (OA = 1/2 AC; OB = 1/2 BD) Периметр = 66 см. Имеем уравнение:
6 x = 66
x = 11 =AB
AC = BD (Свойство диагоналей прямоугольника) AC = BD = 5AB = 55
ответ: 55