Дано:
АВСД- пар-м.
ВК- биссектриса угла В
АК - АД = 1 см
Р(периметр) = 40 см.
Найти:
Стороны пар-ма
1) Рассмотрим треугольник АВК - он равнобедренный (по свойству о биссектрисе, проведённой в параллелограмме)
в нём:
АК = АВ (т.к боковые стороны)
2) Пусть КД - Х см. , тогда АК - Х=1 , а т.к АК = АВ (по выше доказанному), следовательно АВ - тоже Х+1, а т.к в параллелограмме все стороны попарено параллельны, то ВС - 2Х+1, а СД - Х +1, а т.к сумма всех сторон равна 40 см. (по условию), то составим уравнение:
Х + Х + 1 + Х + 1 + 2Х + 1 + Х + 1 = 40
Дальь ше решаешь уравнение и находишь оставшиеся стороны алгебрачиски. Всё, и ответ будет готов.
Треуг.ADM, AM^2=4*3-3=9, AM=3
Треуг.DMС равнобедр.(угол DCM=45, угол MDC=45),MC=sqrt(3),AC=3+sqrt(3)
треуг. ADM подобен треуг.ABC
DM/BC=AM/AC
sqrt(3)/BC=3/(3+sqrt(3)
BC=sqrt(3)+1