ответ: 1 - 30°
2 - 9см
Объяснение: 1 - Второй острый угол равен
180 - 90 - 60 = 30°
т.к. сумма углов в треугольнике равна 180 градусам.
2 - В прямоугольном треугольнике с углом в 30 градусов катет против этого угла в два раза короче гипотенузы
Если длина этого катета a, то длина гипотенузы 2a
Второй катет b найдём по Пифагору
a² + b² = (2a)²
a² + b² = 4a²
b² = 3a²
b = a√3 см
√3 больше 1, так что из двух катетов катет a, против угла в 30 градусов, является самым коротким.
Найдём длину короткого катета
а + 2а = 27
3а = 27
а = 9 см
Объяснение:
оловине гипотенузы ВС (СН=1/2CD, СD=BC как стороны ромба). Используем свойство прямоугольного треугольника: если катет прямоугольного треуг-ка равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°. Значит
<CBH=30°
Зная, что сумма острых углов прямоугольного треугольника равна 90°, находим угол С:
<C=90-<CBH=90-30=60°, что и требовалось доказать.
2. ВМ=АВ-AM, CL=BC-BL, DP=CD-CP, AQ=AD-DQ, но
АМ=BL=СР=DQ по условию, а АВ=BC=CD=AD как стороны квадрата. Значит
ВМ=CL=DP=AQ
Прямоугольные треугольники MAQ, LBM, PCL и QDP равны, таким образом, по двум сторонам и углу между ними (углы А, B, C, D - прямые, АМ=BL=СР=DQ по условию, ВМ=CL=DP=AQ как только что доказано). У равных треугольников равны и соответственные стороны MQ, LM, LP и PQ. Значит, MLPQ-квадрат.