На прямих ав і вс лежать основи трапеції авсd. знайдіть відстань між даними прямими, якщо: 1)ав=сд= 17, ад=8, вс-ад=16 2) ав= 14, ад = 8, сд= 15, вс=21
Центр вписанной окружности лежит на биссектрисе угла. Биссектриса - геом. место точек, равноудаленных от сторон угла. Если окружность касается сторон угла, ее центр удален от сторон угла на радиус, следовательно лежит на биссектрисе угла.
Радиус, проведенный в точку касания, перпендикулярен касательной. Расстояние от точки до прямой измеряется длиной перпендикуляра.
Если требуется док-во через треугольники, то проводим радиусы в точки касания, образованные треугольники равны по общей гипотенузе и катетам, острые углы равны.
1. В равнобедренном треугольнике углы при основании равны. 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой. 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Докажем свойство 1.
Дано: ΔАВС, АВ = ВС. Доказать: ∠А = ∠С.
Доказательство:
Проведем медиану ВН. АВ = ВС по условию, АН = НС, так как ВН медиана, ВН - общая сторона для треугольников АВН и СВН, ⇒ ΔАВН = ΔСВН по трем сторонам. В равных треугольниках напротив равных сторон лежат равные углы. Значит, ∠А = ∠С.
Радиус, проведенный в точку касания, перпендикулярен касательной. Расстояние от точки до прямой измеряется длиной перпендикуляра.
Если требуется док-во через треугольники, то проводим радиусы в точки касания, образованные треугольники равны по общей гипотенузе и катетам, острые углы равны.