Sabc=48 cm²
Объяснение:
Пусть треугольник АВС и АС основание =12 см.
Пусть ВМ -высота, проведенная к основанию.
Пусть О центр вписанной окружности - находится на высоте ВМ, так как треугольник АВС равнобедренный.
Тогда АМ=МС= 12:2=6 см
АО- биссектриса угла О, так как центр вписанной окружности находится в точке пересечения биссектрис треугольника ( то есть на биссектрисе АО).
Тогда tg∡OAM = OM/AM= 3/6=1/2=0.5
Найдем tg∡ A= 2*tg∡OAM/(1-tg²∡AM)=
2*0.5/(1-1/4)=1/3*4=4/3
tg∡ A=4/3
=> BM/MA=4/3
BM=4/3*6 =8
Sabc=(AC*BM)/2= 12*8/2=48 cm²
2.
AO = OB (радиусы), а один угол 60°, значит другие две также по 60, значит треугольник равносторонний. Таким образом х = 8.
ответ: 8.
4.
Весь круг - 360°
Дуга KL = 360° - 143° - 77° = 140°
Угол х опирается на эту дугу и он вписанный, значит равен половине дуги:
х = 140°/2 = 70°
ответ: 70°
6.
KN - диаметр, значит дуга KMN равна 180 градусам.
Дуга МК равна 180° - 124° = 56°
Угол MNK вписанный, равен половине дуги МК
х = 56°/2 = 28°
ответ: 28°
8.
Дуга МК равна 360° - 46° - 112° = 202°
х равен половине дуги МК
х = 101°
ответ: 101°
Задачи 4,6,8 однотипные
Проведем осевое сечение, в сечении получим равнобедренный треугольник с боковой стороной 10 и высотой 8, его основание равно 12 (по теореме Пифагора из прямоугольного треугольника, образуемого его высотой). Тогда радиус основания равен 6. S=pi*r*l=60pi.