На боковой стороне МЕ равнобедренного треугольника МЕК, как на диаметре построена окружность, пересекающая сторону ЕК в точке Д. Оказалось ЕД:ДК=2:1. Найдите основание МК, если ME=KE=9,
Пусть АВС - равнобедренный треугольник и АВ=ВС. В равнобедренном треугольнике боковые стороны равны. Значит АВ=ВС=20 см (8+12). Биссектриса делит сторону на отрезки, пропорциональные прилежащим сторонам (свойство биссектрисы). Тогда АС/АВ=12/8, отсюда АС=20*12/8=30 см. Зная три стороны, по формулам радиуса вписанной окружности найдем этот радиус. 1. Радиус равен: r=√[(p-a)(p-b)(p-c)/p], где a,b,c - стороны треугольника, р - полупериметр. В нашем случае р=(20+20+30)/2=35см r=√(15*15*5/35) =15/√7 или 15√7/7 см. 2. Для равнобедренного треугольника r=(b/2)*√[(2a-b)/(2a+b)], где а - боковая сторона, b - основание. Тогда r=15√(10/70)=15/√7=15√7/7 см. ответ: r=15√7/7 см.
Для начала берешь данный отрезок и находишь его середину с простейших построений. (чертишь 2 окружности радиуса больше половины длинны отрезка. Центрами этих окружностей будут концы отрезка. В итоге эти окружности пересекутся в 2 точках. Через эти 2 точки провожишь прямую. Данная прямая будет серединным перпендикуляром. А серединный перпендикуляр обладает следующим свойством: делит отрезок пополам) Теперь рисуешь данный угол. Берешь циркуль и им отмеряешь половину отрезка (расстояние от конца отрезка до точки пересечения серединного перпендикуляра с отрезком). Затем с циркуля откладываешь эти расстояния на стороны угла (циркуль ставишь в вершину угла и затем строишь окружность с радиусом, равным половине отрезка.) Затем отмечаещь точки пересечения окружности и сторон угла. Это и есть искомые точки
Объяснение:
Пусть окр-ть пересекает MK в т. H, тогда <MHE = 90 - вписанный угол, опирающийся на диаметр, следовательно EH - высота, бисс и мед, т.е. HK = MH
DK = 9/3 = 3, ED = 2*3 = 6
По св-ву секущих в окр-ти
HK * MK = DK * EK = 3 * 9 = 27
HK * 2HK = 2HK^2 = 27
HK = √13,5
MK = 2√13,5 = √54