Основание пирамиды dabc-равнобедренный треугольник abc, в котором ab=bc=13, ac=24ю ребро db перпендикулярно плоскости основания и равно 20. найдите tg двугранного угла при ребре ac
Проведем диагонали АС и ВD.Точку пересечения обозначим Е. В треугольниках АВЕ и СDЕ имеется по два равных угла: один - по условию, второй - вертикальный. Первый признак подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.⇒ ∆ АВЕ ≈ ∆ СDЕ, ⇒ АЕ пропорциональна DE, ВЕ пропорциональна ЕС. В треугольниках ADE и ВСЕ: АЕ пропорциональна DЕ, ВЕ- пропорциональна СЕ, углы АЕD и BEC равны, как вертикальные. Второй признак подобия треугольников Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Треугольники ADE и ВСЕ подобны и углы, противолежащие пропорциональным сторонам, равны. ⇒∠ВDA=∠BCA
Проведем диагонали АС и ВD.Точку пересечения обозначим Е. В треугольниках АВЕ и СDЕ имеется по два равных угла: один - по условию, второй - вертикальный. Первый признак подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.⇒ ∆ АВЕ ≈ ∆ СDЕ, ⇒ АЕ пропорциональна DE, ВЕ пропорциональна ЕС. В треугольниках ADE и ВСЕ: АЕ пропорциональна DЕ, ВЕ- пропорциональна СЕ, углы АЕD и BEC равны, как вертикальные. Второй признак подобия треугольников Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Треугольники ADE и ВСЕ подобны и углы, противолежащие пропорциональным сторонам, равны. ⇒∠ВDA=∠BCA ----- [email protected]
ПРОВЕДИ BK перпенд.AC,AK=KC=12, BK^2=13^2=12^2=25, BK=5
DK перпенд.AC по т. про три перпенд., значит угол DKB линейній угол двугранного угла при ребре AC.tg DAK=20/5=1/4