М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Slimede
Slimede
22.01.2021 08:28 •  Геометрия

Втреугольнике abc угол с равен 90°, cos a= 2/3, ac=6. найдите ab.

👇
Ответ:
cherryyy777
cherryyy777
22.01.2021
Cos A=AC/AB
AB=AC/cos A
AB=6/(2/3)=9
4,8(67 оценок)
Открыть все ответы
Ответ:
Лаура81и
Лаура81и
22.01.2021
Дано: ABCD - трапеция
EF - средняя линия
EO = 3 см
OF = 4 см
Найти: AB
Решение.
1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам.
2) Рассмотрим треугольники EOD и ABD.
Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD.
Угол DBC общий. Следовательно, треугольник BOF подобен BDC.
3) Из подобия треугольников следует, что
AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
4,7(57 оценок)
Ответ:
annakraevaya061
annakraevaya061
22.01.2021

Окружность, вписанная в правильный треугольник

 

Окружность, вписанная в правильный треугольник, помимо свойств вписанной в произвольный треугольник окружности, обладает своими собственными свойствами.

1) Центр вписанной в треугольник окружности — точка пересечения его биссектрис.

Поскольку в равностороннем треугольнике биссектрисы, медианы и высоты совпадают, то центр вписанной в правильный треугольник окружности является точкой пересечения не только его биссектрис, но также медиан и высот.

okruzhnost-vpisannaya-v-pravilnyj-treugolnikНапример, в правильном треугольнике ABC AB=BC=AC=a

точка O — центр вписанной окружности.

AK, BF и CD — биссектрисы, медианы и высоты треугольника ABC.

   \[AK \cap BF = O,\]

   \[AK \cap CD = O.\]

2) Расстояние от центра вписанной окружности до точки касания её со стороной треугольника равно радиусу. Так как центр вписанной в правильный треугольник окружности лежит на пересечении его медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то радиус вписанной в равносторонний треугольник окружности равен одной третьей длины медианы:

   \[OF = \frac{1}{3}BF,\]

   \[r = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\]

Таким образом, формула для радиуса вписанной в правильный треугольник окружности

   \[r = \frac{{a\sqrt 3 }}{6}\]

Обратно, сторона равностороннего треугольника через радиус вписанной окружности:

Объяснение:

4,8(25 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ