мде)
Дано: треугольник ABC, AB = 9 см, AC = 40 см
Найти: BC, углы B и C.
Решение: 1) BC^2 = AB^2 + AC^2 - по теореме Пифагора
BC = кореньквадратныйиз(9^2 + 40^2) = кореньквадратныйиз(81 + 1600) = корень квадратный из(1681) = 41
2) Углы можно найти многими Так например:
sin B = AC / BC = 40 / 41 = 0,9756
sin C = AB / BC = 9 / 41 = 0,2195
Угол B = 77.32
Угол С = 12.68
Это я нашёл по калькулятору арксинусов. Устно это не найдешь)
В 8-9 классах это обычно находят либо на калькуляторе, либо по таблице брадиса. Что такое арксинус в таких классах ещё мало кто знает(по программе не положено), поэтому записывать ответ в арксинусах уж точно нельзя. =)
Можно перевести значения углов после запятой в минуты(в шестидесятитеричную систему счисления)
32 - 100
x - 60
x = 19,2, округляем = 19
68 - 100
x - 60
x = 40,8 , округляем = 41
Получаем такие значения углов
B = 77 градусов 19 минут = 77°19'
C = 12 градусов 41 минута = 12°41'
=)
Объяснение:
Дано: AB = A1B1, CH=C1H1, <CAH=<C1A1Н1. АН, А1Н1 - высоты.
Доказать: △АВС=△А1В1С1.
Док-во:
Рассмотрим △АСН и △А1С1Н1. Они прямоугольные и у них CH=C1H1 - катеты, <CAH=<C1A1Н1 - острые углы. Значит △АСН=△А1С1Н1 по 4 признаку (по катету и острому углу). => АС=А1С1, АН=А1Н1.
Рассмотрим △АВН и △А1В1Н1. Они прямоугольные и у них АН=А1Н1 - катеты, AB = A1B1 - гипотенузы. Значит △АВН=△А1В1Н1 по 2 признаку (по катету и гипотенузе). => ВН=В1Н1.
CH=C1H1, ВН=В1Н1, CB=CH+HB, C1B1=C1H1+H1B1 => CB=C1B1.
Таким образом для треугольников △АВС и △А1В1С1 имеем, что AB = A1B1, АС=А1С1, CB=C1B1, значит △АВС=△А1В1С1 по 3му признаку (по 3м сторонам), чтд.