Обозначения. Для внешних касательных точки касания А и В ("сверху"), А1 и В1 ("снизу"), внутренняя касательная пересекает внешние в точках К (c прямой АВ) и K1 (с прямой А1В1). С - "верхняя" точка касания внутренней касательной, С1 - "нижняя".
Получается вот что - одной окружности (ну, пусть слева на чертеже) касательные касаются в точках А, А1(это внешние) и С1 (это - внутренняя, как бы ниже линии центров), а другой (которая справа) - в точках В, В1(внешние) и С (внутренняя, выше линии центров). Точка К1 лежит ниже линии центров (и "слева"), и К1А1 = К1С1; точка К лежит выше линии центров (и "справа"), КВ = КС.
СС1 = КС1 - КС = КА - КС = АВ - КВ - КС = АВ - 2*КС.
СС1 = К1С - К1С1 = К1В1 - К1С1 = А1В1 - К1С1 - А1К1 = А1В1 - 2*К1С1;
Но АВ = А1В1, поэтому К1С1 = КС;
АВ = КС1 + КВ = КК1 - К1С1 + КС = КК1, ч.т.д.
Следовательно АБ:АД=БО:БЦ (количественно - в 2 раза больше/меньше)
Найти: площадь треугольника АБД.
Сперва найдем длину стороны (правильного) пятиуголника. а=
Найдем апофему (перпендикуляр к стороне от центра)
h=(S*2)/5*a=60/20,7=2,9
По теореме пифагора найдем расстояние от центра до любой точки.
АО=r= sqrt(h²*(a/2)²)=
Зная высоту треугольника АБД (апофема + расстояние до точки/радиус описанной окружности) найдем площадь треугольника.
Sabd= (a*H)/2=4,17*(2,9+3,57)=27cm²
p.s. Задача выполнена с учетом, что точка Д лежит напротив отрезка AB,а не рядом.
удачи:))