8. Припустим, что k i l паралельны, а m секущая. Тогда тут будут действовать теоремы о внутрених и внешних углах с секущей
Вертикальные угол, с углом 36° будет 36°
Модем видет, что здесь действует теорема о внутреннем и внешнем углах сума которых ровна 180°. По этому k||l
9. Рассмотрим треугольник АВС
АВ=СА
то есть треугольник АВС равнобедренный
с этого модем скать, что ВС основа, угол В = углу С
На рисунку 9 видим, что дано два угла и они равны
Соответственно угол С будет равен тем двом углам, так как они равны и один из рих равен углу С
Тут мы мы можем предположить, что ВС может быть секущей и тогда внутренние разносотороние куты должны будут быть равны если a||b.
Соответственно a||b
В равнобедренном треугольнике ABC рассмотрим два треугольника KAC и MCA. Треугольник KAC равен треугольнику MCA по двум сторонам и углу между ними, а именно:
1). Сторона AC - общая;
2). MA=KC, так как:
AB=BC, ведь треугольник ABC - равнобедренный, а MA=1/2*AB (т. M - середина AB, т.к. MC - медиана), KC=1/2*BC (т. K - середина BC, т.к. KA - медиана), значит MA=KC;
3). ∠BAC=∠BCA, т.к. треугольник ABC - равнобедренный.
Из равенства треугольников KAC и MCA следует равенство соответственных элементов, а значит ∠KAC=∠MCA, что и требовалось доказать.