1) ∠E--общий для треугольников ΔΕΒС и ΔЕАD. Также, поскольку основы трапеции АD и ΒС параллельны, то DС--секущая, поэтому углы
∠ΕСВ=∠ЕDА как соответсвенные.
АВ также секущая, поэтому и ∠ΕΒС=∠ЕАD как соответсвенные.
Таким образом, ΔΕΒС и ΔЕАD подобные по трём углам ΔΕΒС ~ ΔЕАD.
Значит, все их соответствующие стороны пропорциональны => АD/ΒС=АЕ/ВЕ
7/3=14/ВЕ
ВЕ=3*14/7=3*2=6 см
2) Это треугольники ΔMEK~ΔBAK~ΔBEA~ΔMAN (т.к. согласно свойствам секущей, их соответсвенные углы равны, и их три угла равны)
3) По свойствам прямоугольника, диагонали точкой пересечения делятся попалам и они равны => OD=OC=24/2=12 см
Поэтому ΔCOD-равнобедренный
<COD=<BOA как вертикальные
<COD+<АOD=180°, т.к. они смежные
Обозначим <COD=х, <АOD=х+60°
Тогда х+х+60°=180°
2х+60°=180°
2х=180°-60°
2х= 120° | : 2
х=60°
Т.к. ΔCOD-равнобедренный, то если угол при его вершине равен 60°, то и два его других угла будут равны 60°, а значит это равносторонний треугольник, поэтому все его стороны равны 12 см
PΔCOD=12*3=36 см
По теореме косинусов
(2√3)²=6²+х²-2·6·х·cos 30°
12=36+x²-6√3·x=0
x²- 6√3·x+24=0
D=108-96=12
x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника.
Углы параллелограмма 60° и 120°
если х=4√3
то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали)
6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60°
второй угол параллелограмма 120°
см. рисунок 2
ответ 120° и 60°