x-боковая сторона треугольника.
(х-2 3/5)-основание равнобедренного треугольника.
Составим уравнение:
2х+(х-2 3/5)=43
2х+х-2 3/5=43
3х=43+2 3/5
3х=43+2,6
3х=45,6
х=45,6/3
х=15,2
15,2-2,6=12,6см
ответ:15,2см боковые стороны,12,6см основание треугольника.
81√3 ед²
Дано: КМРТ - трапеция, КМ=РТ, ∠Т=60°, КР⊥РТ; КТ=12√3. Найти S(КМРТ).
Рассмотрим ΔКРТ - прямоугольный; ∠РКТ=90-60=30°, значит, РТ=0,5КТ=6√3 по свойству катета, лежащего против угла 30 градусов.
Проведем высоту РН и рассмотрим ΔРТН - прямоугольный;
∠ТРН=90-60=30°, значит, ТН=0,5РТ=3√3.
Найдем РН по теореме Пифагора:
РН²=РТ²-ТН²=108-27=81; РН=9.
Найдем МР. ∠МРК=∠РКН=30° как внутренние накрест лежащие при МР║КТ и секущей КР; ∠МКР=60-30=30°, значит, ΔКМР - равнобедренный, МР=КМ=6√3.
S(КМРТ)=(МР+КТ)/2 * РН = (6√3+12√3)/2 * 9=(9√3)*9=81√3 ед²
81√3 ед²
Дано: КМРТ - трапеция, КМ=РТ, ∠Т=60°, КР⊥РТ; КТ=12√3. Найти S(КМРТ).
Рассмотрим ΔКРТ - прямоугольный; ∠РКТ=90-60=30°, значит, РТ=0,5КТ=6√3 по свойству катета, лежащего против угла 30 градусов.
Проведем высоту РН и рассмотрим ΔРТН - прямоугольный;
∠ТРН=90-60=30°, значит, ТН=0,5РТ=3√3.
Найдем РН по теореме Пифагора:
РН²=РТ²-ТН²=108-27=81; РН=9.
Найдем МР. ∠МРК=∠РКН=30° как внутренние накрест лежащие при МР║КТ и секущей КР; ∠МКР=60-30=30°, значит, ΔКМР - равнобедренный, МР=КМ=6√3.
S(КМРТ)=(МР+КТ)/2 * РН = (6√3+12√3)/2 * 9=(9√3)*9=81√3 ед²
Рисунок: равнобедренный Δ АВС
ΔАВС= равнобедренный, т.к. АВ=ВС, АС-основание
Пусть АВ=ВС=х см, тогда АС= х-2 3/5
Р ΔАВС=АВ+ВС+АС
х+х+х-2 3/5=43
3х=43+2 3/5
3х= 43+2,6
3х= 45,6
х=45,6:3
х= 15,2
АВ=ВС= 15,2 АС=15,2-2,6=12,6