М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
WirexiaEnderman
WirexiaEnderman
18.07.2021 09:03 •  Геометрия

Сточка а взятой вне плоскости а, проведены к ней равные наклонные ав и ас. расстояние вс между основаниями наклонных равна 10 см. угол между вс и ав равен 60градусов, угол между вс и проекцией наклонной ав на плоскость а -30градусов. найти расстояние от точки а до плоскости а.

👇
Ответ:
dff45rt96
dff45rt96
18.07.2021

тут очень всё легко решается. заметьте. что про проекцию здесь лишнее.

Решаение:

если наклонные равные, значит треугольник равнобедренный, а у него угол = 60 градусам, следовательно треугольник равносторонний, опускаем перпендикуляр на плоскость А, а треугольник равнобедренный, значит 1/2 отрезка ВС=5. по т. Пиф. найдём расстояние =5√3.

4,5(63 оценок)
Ответ:
630035
630035
18.07.2021
Добрый день!

Для решения этой задачи, мы можем использовать свойства треугольников и проекций.

1. Для начала, обратимся к углу между вс и ав. Мы знаем, что угол равен 60 градусов. По свойству проекций, угол между вс и проекцией наклонной ав на плоскость а равен суплементарному углу между вс и ав. Следовательно, суплементарный угол равен (180-60) градусов = 120 градусов.

2. Обратимся к треугольнику, образованному вс и проекцией наклонной ав на плоскость а. Давайте обозначим проекцию как b.

а. Зная угол в этом треугольнике, расстояние между его основаниями и одну его сторону (вс), мы можем использовать тригонометрическую функцию косинус для определения длины b.
cos(120 градусов) = вс / b
b = вс / cos(120 градусов)

3. Теперь обратимся к треугольнику вс и ав. Мы знаем, что расстояние между основаниями наклонных равно 10 см. Также, мы знаем угол между этими наклонными.

а. Используя свойство равнобедренного треугольника, мы можем сказать, что угол между вс и ав равен суплементарному углу между вс и проекцией наклонной ав на плоскость а. Следовательно, этот угол равен 120 градусов.

б. Мы можем использовать теорему косинусов в этом треугольнике, чтобы найти расстояние от точки а до основания наклонной ав.
вс^2 = ав^2 + ав^2 - 2 * ав * ав * cos(120 градусов)
вс^2 = 2 * ав^2 - 2 * ав^2 * cos(120 градусов)
вс^2 = 2 * ав^2 - 2 * ав^2 * (-1/2)
вс^2 = 2 * ав^2 + ав^2
вс^2 = 3 * ав^2

в. Расстояние между основаниями наклонных равно 10 см, поэтому мы можем сказать, что 3 * ав^2 = 10^2 = 100.
Отсюда, ав^2 = 100 / 3.

4. Теперь, вернемся к треугольнику вс и проекции наклонной ав на плоскость а. Мы знаем длину проекции b и длину вс.

а. Мы можем использовать теорему Пифагора, чтобы найти расстояние от точки а до плоскости а.
вс^2 = b^2 + ав^2
вс^2 = (вс / cos(120 градусов))^2 + ав^2
вс^2 = 10^2 + 100 / 3.
вс^2 = 100 + 100 / 3
вс^2 = (300 + 100) / 3
вс^2 = 400 / 3

в. Расстояние от точки а до плоскости а равно квадратному корню из 400 / 3.
sqrt(400 / 3) = sqrt(400) / sqrt(3) = 20 / sqrt(3) ≈ 11.547 см (округленно).

Таким образом, расстояние от точки а до плоскости а составляет приблизительно 11.547 см.
4,7(99 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ