пусть О - центр окружности пусть АВ = а пусть АР = в пусть AQ = c пусть АO = х пусть ОВ = ОР = ОQ = r пусть угол РАО = у
по теореме пифагора и по теореме косинусов выразим стороны трех треугольников с общей вершиной А и общей стороной АО получим 3 уравнения x² = a² + r² r²=x² + b²-2xb*cos(y) r²=x²+c²-2xc*cos(y)
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать
пусть О - центр окружности
пусть АВ = а
пусть АР = в
пусть AQ = c
пусть АO = х
пусть ОВ = ОР = ОQ = r
пусть угол РАО = у
по теореме пифагора и по теореме косинусов выразим стороны трех треугольников с общей вершиной А и общей стороной АО
получим 3 уравнения
x² = a² + r²
r²=x² + b²-2xb*cos(y)
r²=x²+c²-2xc*cos(y)
x² = a² + r²
r²=a² + r²+ b²-2xb*cos(y)
r²=a² + r²+c²-2xc*cos(y)
a² + b²=2xb*cos(y)
a² +c²=2xc*cos(y)
(a² + b²)*c=2xbc*cos(y)
(a² +c²)*b=2xbc*cos(y)
(a² +c²)*b=(a² + b²)*c
a²b +c²*b=a²c + b²*c
a²b - a²c = b²*c-c²*b
a²(b - c) = bc(b-c)
a² = bc
AB²= AP*AQ - что и требовалось доказать