М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tatianalednewa
tatianalednewa
13.04.2020 21:16 •  Геометрия

Через точку а проведены касательная ав (в – точка касания) и секущая, которая пересекает окружность в точках p и q. докажите, что ab²= ap*aq.

👇
Ответ:
aandrey336
aandrey336
13.04.2020

пусть О - центр окружности
пусть АВ = а
пусть АР = в
пусть AQ = c
пусть АO = х
пусть ОВ = ОР = ОQ = r
пусть угол РАО = у

по теореме пифагора и по теореме косинусов выразим стороны трех треугольников с общей вершиной А и общей стороной АО
получим 3 уравнения
x² = a² + r²
r²=x² + b²-2xb*cos(y)
r²=x²+c²-2xc*cos(y)

x² = a² + r²
r²=a² + r²+ b²-2xb*cos(y)
r²=a² + r²+c²-2xc*cos(y)

a² + b²=2xb*cos(y)
a² +c²=2xc*cos(y)

(a² + b²)*c=2xbc*cos(y)
(a² +c²)*b=2xbc*cos(y)

(a² +c²)*b=(a² + b²)*c

a²b +c²*b=a²c + b²*c

a²b - a²c = b²*c-c²*b

a²(b - c) = bc(b-c)

a² = bc

AB²= AP*AQ - что и требовалось доказать

4,8(79 оценок)
Открыть все ответы
Ответ:
Мойурок
Мойурок
13.04.2020
Построим сумму векторов а и b и их разность.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129

Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
4,5(77 оценок)
Ответ:
danikpro200201
danikpro200201
13.04.2020
Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать
4,8(100 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ