1. відповідь: а) р=36cм; б) s=24sqrt(3)см^2. а) знайдемо третю сторону за теоремою косинусів: с^2=a^2+b^2-2ab*cos(c)=16^2+6^2-2*16*6*cos(60градусів) =196 c=sqrt(196)=14. тому p=a+b+c=16+6+14=36. б) знайдемо площу за формулою: s=(ab*sin(c))/2=(16*6*sin(60градусів)) /2=24sqrt(3). 2. відповідь: сторона=4см, площа=16см^2. площа круга дорівнює pi*r^2. тому r=sqrt(8). сторона квадрата, вписаного в коло, дорівнює sqrt(2)*r= sqrt(2)*sqrt(8)=4. відповідно площа квадрата дорівнює 4^2=16. 3. відповідь: 384см^2. довжина першого катета дорівнює 12+20=32. бісектриса ділить сторону трикутника на відрізки, що відносяться як 2 інші сторони. тому (другий катет): (гіпотенуза) =12: 20=3: 5. нехай другий катет дорівнює 3х і гіпотенуза дорівнює 5х. тоді, за теоремою піфагора, (3х) ^2+32^2=(5х) ^2 16x^2=1024 x=8. тому другий катет дорівнює 3*8=24. площа прямокутного трикутника дорівнює половині добутку його катетів: s=32*24/2=384.
(х-а)²+(у-в)²=R²- уравнение окружности где (а;в)-координаты центра окружности R--радиус (х-2)²+(у-3)²=4² (х-2)²+(у-3)²=16 начало координат имеет координаты О(0;0) (х-0)²+(у-0)²=(5/2)² x²+y²=25/4 (R=5/2) X²+y²=25 (R=5) 2. C x=(2+4)÷2 y=(7+5)÷2 x=3 y=6 C (3 ; 6) координаты середины отрезка находятся за формулой х=(х1+х2)÷2; у=(у1+у2)÷2 где (х1; у1) (х2;у2) координаты конца отрезка АВ ((4-2); (7-5)) АВ (2;2) АВ²=(4-2)²+(7-5)²=2²+2²=4+4=8 АВ=√8=√4·2=√2²·2=2√2 y=kx+b уравнение прямой если прямая проходит через точки значит ее координаты удовлетворяют уравнение прямой 5=2k+b (×-1) -5=-2k-b 7=4k+b первое уравнение + второе 2=2k k=2/2=1 5=2·1+b b=5-2=3 y=x+3 уравнение прямой которая проходит через точки А и В