При точке D два угла. Поэтому возможны два варианта 1) см. рис. 1 Сумма углов треугольника ADC равна 180° ∠DAC = 180°-∠1 -∠ 2=180°-40°-55°=85°, значит ∠ DAB=85°, а угол ВАС = 85°+85=170° так как биссектриса AD делит угол А пополам. Этот вариант невозможен, так как сумма углов треугольника АВС равна 180°, а ∠А + ∠С=170°+40° уже больше 180°
Вот видите, что получается, когда задача сформулирована некорректно. Если сложно добавить рисунок, то можно было хотя бы углы при точке D правильно назвать. BAD и СAD.
2) см. рис.2 ∠BDC = 55°, тогда смежный с ним угол СDA равен 180°-55°=125° Сумма углов треугольника ADC равна 180° ∠DAC = 180°-∠1 -125°=180°-40°-125°= 15°, значит ∠ DAB=15°, а угол ВАС=15°+15°=30° угол А равен 30°, значит угол В равен 180°-30°-40°=110° ответ. Угол А равен 30°, угол С равен 40°, угол В равен110°
1.Диагонали ромба разбивают его на 4 прямоугольных треугольника. Так как диагонали ромба в точке пересечения делятся пополам, катеты каждого треугольника равны 8/2=4 и 6/2=3. Гипотенузой такого треугольника будет сторона исходного ромба. Её можно найти по теореме Пифагора - . Значит, сторона ромба равна 5 см (в ромбе все стороны равны).
2.Площадь прямоугольника со сторонами 4 и 6 равна 6*4=24. Раз квадрат и прямоугольник равновелики, площадь квадрата также равна 24. Сторона квадрата с площадью 24 равна см.
Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. Выходит, у нас 4 прямоугольных треугольника, рассмотрим 1 из них.
20/2 = 10 см - 1 катет
48/2 = 24 - 2 катет
Сторона ромба является гипотенузой, найдем ее по теореме Пифагора. Квадрат гипотенузы равен сумме квадратов катетов
а^2 + б^2 = с^2
10^2 + 24^2 = 100 + 576 = 676
√676 = 26 см
ответ: сторона ромба = 26 см