СK- высота ∆ АВС, следовательно, перпендикулярна АВ.
В то же время она является проекцией наклонной DK. По теореме о трех перпендикулярах:
прямая, проведенная на плоскости через основание наклонной перпендикулярно к ее проекции, перпендикулярна самой наклонной. Следовательно, АВ и DK взаимно перпендикулярны, ч.т.д.
___
Расстояние от точки до плоскости определяется длиной перпендикуляра, проведенного от этой точки до плоскости.
АК перпендикулярна двум пересекающимся прямым плоскости DCK.
Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.⇒
АК - перпендикулярна плоскости DKC и является расстоянием до нее от точки А.
⊿ АKD- прямоугольный, ∠ DAK=45º,⇒∠ ADK=45º⇒
⊿ АKD - равнобедренный. АК=DK.
AK=AD•cos 45º= ( √2•√2):2=1 (ед. длины).
пусть A(x1;y1);B(9x2;y2);C(x3;y3)
тогда если О -середина АС , то
(x1+x3)/2=0;x1+x3=0
(y1+y3)/2=-1; y1+y3=-2;
если Р середина ВС
(x2+x3)/2=1; x2+x3=2;
(y2+y3)/2=2.5; y2+y3=5;
Q-середина АВ
(x1+x2)/2=-3; x1+x2=-6
(y1+y2)/2=0.5; y1+y2=1
по х получу систему: x1+x3=0; x2+x3=2; x1+x2=6
решая ее x1=-4; x2=-2;x3=4
y1=-3;y2=4; y3=1
B(x2;y2)=(-2;4)
O(0;-1)
|BO|^2=(0+2)^2+(-1-4)^2=4+25=29
|BO|=√29