В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
Можно, не будучи знакомым с этим свойством равнобедренной трапеции, самостоятельно прийти к этому выводу, опустив две высоты из вершин тупых углов трапеции и сделав необходимые расчеты.
Средняя линия равна 16, следовательно, сумма оснований равна ВС+АD=16·2=32 Большее основание равно AD=32-BC=32-6=26 Отрезок НD- меньший из двух, на которые высота делит основание АД. Полуразность оснований равна HD=(26-6):2=10 ответ: Отрезок HD=10
Точка К, из которой будет виден отрезок МN под наибольшим углом, будет находиться на общей окружности с точками М и N. При этом OK для неё является касательной. По свойству касательной и секущей ОК²=ОМ·ОN. Пусть ОМ=х, тогда ОN=OM+MN=x+6, 4²=x(х+6), х²+6х-4=0, х1=-8, отрицательное значение не подходит, х2=2. ON=2+6=8 дм - это ответ.
Теперь докажем, что отрезок MN виден из точки К под большим углом. Пусть радиус окружности около тр-ка КMN равен r. На стороне ОК в любом месте возьмём точку Р и опишем окружность около тр-ка РMN, радиусом R. ОР для неё является секущей, а для окружности, радиусом r - касательной, значит R>r. Формула хорды: l=2R·sin(x/2), где х - градусная мера хорды. ∠MKN=α, ∠MPN=β. Обратим внимание, что углы α и β - это половина градусной меры хорды. MN=2R·sinβ ⇒ sinβ=MN/2R. MN=2r·sinα ⇒ sinα=MN/2r. Сравним синусы, предположив, что они равны. MN/2R=MN/2r. 1/R=1/r, но R>r, значит 1/R<1/r, значит sinβ<sinα. Так как градусная мера хорды не может быть больше 180°, значит в формуле хорды 0°<α<90°, 0°<β<90°. В этом диапазоне синус угла тем больше, чем больше его градусная мера, значит α>β. Доказано.
В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований.
Можно, не будучи знакомым с этим свойством равнобедренной трапеции, самостоятельно прийти к этому выводу, опустив две высоты из вершин тупых углов трапеции и сделав необходимые расчеты.
Средняя линия равна 16, следовательно, сумма оснований равна
ВС+АD=16·2=32
Большее основание равно
AD=32-BC=32-6=26
Отрезок НD- меньший из двух, на которые высота делит основание АД.
Полуразность оснований равна
HD=(26-6):2=10
ответ: Отрезок HD=10