Самостоятельная работа 4.1 соотношения между сторонами и углами треугольника вариант 1 а1. один из углов равнобедренного треугольника равен 96о. найдите два других угла треугольника. а2. в треугольнике авс проведена биссектриса вк. hello_html_m462ac668.gifа = 75о, hello_html_m462ac668.gifс = 35о. а) докажите, что треугольник bdc - равнобедренный. б) сравните отрезки ad и dc. а3. периметр равнобедренного тупоугольного треугольника равен 45 см, а одна из его сторон больше другой на 9 см. найдите стороны этого треугольника.
11 градусов
Объяснение:
начертим прямоугольный треугольник АВС так, что бы справа у него был прямой угол.
проведём из прямого угла сначала медиану, а потом биссектрису другим цветом(что б не запутаться.)
Обазначим медиану СD, а биссектрису СX
Слева будет острый угол, равный 34.
тогда по свойству прям. угол. треуг. медиана, проведённая из вершины прямого угла равна половине гипотенузы.
Отмечаем это на черчеже.
Видим, что у нас образовался р/б треугольгик АСD.
У него есть острый угол равный 34- по мусловию.
Тогда по св0ву р/б треуг. углы при основании равны.
тогда угол DCA равен 34.
Но мы знаем, что биссектриса делит прямой угол пополам.
Тогда угол ВСА : 2 равно 45 равно углы DCX и XCA.
Теперь мы вычитаем из угла XCA угол DCA равно 45-34=11 градусов
Равно угол XCD