7 задание.
дано :
треугольник р/б.
Р=20см
АС=4см
найти :
сторону АВ
т.к ВС - высота (угол при прямой D)
и медиана АС=СD
1)4см+4см=8см основание
АВ=ВD, т.к треугольник р/б (равнобедренный)
2)20см-8см=12см сумма равных сторон
3) 12см:2=6см равные стороны
ответ : АВ = 6см
8 задание.
дано :
треугольник р/б
Р=32см
АВ-DC=4см
найти : ВС
тут можно решить уравнением
возьмем DC за х
(х+4)+(х+4)+2х=32
(объясняю:
х+4
чтоб найти DC надо к DC прибавить 4 в результате чего получается АВ
2х
это 2 × х, т.к мы взяли DC за х
х+4+2х это сумма половины основания и одной стороны, по этому дублируем, то есть получается
(х+4)+(х+4)+2х=32
32 это периметр)
решаем уравнение
1) (х+4)+(х+4)+2х=32
2х+8+2х=32
4х=24
х=24:4
х=6 это мы нашли DC
2) DC=AD, т.к DB биссектриса
6+6=12 основание
3) периметр - основание = сумма сторон
Ртреугольника-АС= АВ+ВС
32-12=20 сумма сторон АВ+ВС
4) АВ=ВС
20:2=10 AB и BC
ответ : ВС =10см
Сделаем рисунок.
Пусть сторона, к которой прилежат углы, данные в условии, будет основанием АС треугольника АВС.
Из вершины В опустим к АС высоту ВН.
С ее мы отсекли от треугольника АВС равнобедренный прямоугольный треугольник АВН.
Угол ВАС=45° по условию, АВН равен ему - из прямоугольногоо треугольника АВН.
Обозначим катеты ВН и АН этого треугольника х ( т.к. они равны).
Тогда НС=2-х,
а сторона ВС, как гипотенуза треугольника ВНС, в котором, катет противолежащий углу 30°, равен х, равна 2х.
Составим уравнение по теореме Пифагора для стороны ВС треугольника ВНС.
ВС²=НС²+ВН²
(2х)²= х ²+(2-х)²
4х²= х²+ 4-4х+х ²
2х²+ 4х-4 =0
D=b²-4ac=4²-4·2·-4=48
х1= (- 4 +√48) :4= -( 4 - 4√3) :4= -4(1-√3):4=√3-1
ВС=2(√3-1) ≈1,464
АВ=(√3-1)√2=√6-√2≈ 2,449-1,414≈1,035
∆MPF=∆EPN, т. к MP=PN;EP=PF по условию,
ےMPF=ےEPN, как вертикальные.
ےFMP=ےENP, как углы в равных треугольниках, лежащие против равных сторон. Но эти углы являются внутренними накрестлежащими для сторон MF и EN.
Следовательно EN параллельна MF