1) d=√2^2+2^2=√8=2√2-ищем вектор d через теорему Пифагора
Исходя из того, что длина вектора равна модулю вектора получаем:
c*d=2*2√2*cos(фи)=2*2√2*√2=8
Исходя из того, что это прямоугольник cos(фи)= с/d =2/2√2=√2
2)b, d - колониальные векторы. Если совместить их Угл будет 180°, а сos(фи)= -1.
b*d=2√2*2√2*(-1)=-8
3) модули b, n равны поэтому b=n=2√2
Если совместить и сделать из этих векторов треугольник, тогда он будет равнобедренным. Проводим медиану из угла(фи), получаем два прямоугольных треугольника и ищем 1/2 cos(фи)= 2/2√2=√2, тогда cos(фи)= 2√2.
b*n= 2√2*2√2*2√2=16√2
Объяснение:
надеюсь, что всё верно, и если что-то будет непонятно - обращайтесь. Удачи :)
Розглянемо трикутники АВМ і А1В1М1. За умовою АВ = А1В1, АМ = А1М1, ﮮВАС = ﮮВ1А1С1. Оскільки АМ і А1М1 – бісектриси рівних кутів ВАС і В1А1С1, тоді ﮮВАС = 2ﮮВАМ = ﮮВ1А1С1 = 2ﮮВ1А1М1, тобто ﮮВАМ = ﮮВ1А1М1. За двома сторонами та кутом між ними ∆ВАМ = ∆В1А1М1. У рівних трикутників відповідні сторони та кути рівні АВ = А1В1, ﮮВМА = ﮮВ1М1А1. Розглянемо трикутники АМС і А1М1С1. За умовою ﮮВАС = 2ﮮМАС = ﮮВ1А1С1 = 2ﮮМ1А1С1, тобто ﮮМАС = ﮮМ1А1С1, переконаємось, що ﮮАМС = ﮮА1М1С1, тобто різниця величин двох кутів дорівнює нулю. Кути розгорнуті ﮮВАС = ﮮВ1М1С1 = 180˚. Тому ﮮАМС – ﮮА1М1С1 = (180˚ - ﮮВМА) – (180˚ - ﮮВ1М1А1) = ﮮВ1М1А1 – ﮮВМА = 0˚. За стороною і двома прилеглими кутами ∆АМС = ∆А1М1С1. У рівних трикутників відповідні сторони і кути рівні АС = А1С1, ﮮАСВ = ﮮА1С1В1, МС = МС1. За основною властивістю довжини відрізка ВС = ВМ + МВ = В1С1 = В1М1 + М1С1. Трикутники АВС і А1В1С1 рівні.