Доказательство векторов. 1) доказать, что вектор mn равен нулевому вектору, т.е. доказать что mn - нулевой вектор. 2) доказать, что точка m1 принадлежит вектору mn. рисунков нет, сказали просто доказать это.
2)Т.к. АД║ВС ( основания трапеции), АС-секущая, то ∠ДАС=∠ВСА , как накрест лежащие. Значит в ΔАСВ есть два равных угла по 22,5° ⇒ ΔАСВ-равнобедренный и ВС=ВА=4√2.
3)Пусть ВК⊥АД, тогда ΔВКА-прямоугольный и равнобедренный , т.к. ∠КВА=90°-45°=45°. Обозначим равные катеты через х. По т. Пифагора :х²+х²=(4√2)², 2х²=16*2, х=4, КА=ВК=4.
в ромбе ABCD два равных тупых угла (DAB, DCB) и два равных острых (ADC, ABC). Примите острый за х. AE -перпендикуляр из тупого угла к стороне DC, DE = EC. трAED = трAEC (1 признак равенства прям-ых тр-ов - по двум катетам: DE = EC, AE - общая) => в равных тр-ах против равных сторон лежат равные углы: ADE = ECA => ECA = ADC = ABC = x => DCB = DAB = 2x (свойство ромба: диагональ есть биссектриса) сумма углов ромба равна 360 градусам => 2x + 2x +x + x = 360 ADC = ABC = x = 60 (острый угол ромба) DCB = DAB = 2х = 120 (тупой угол ромба).
Объяснение:
АВСД -прямоугольная трапеция ,ВС=4√2 , ∠А=45°, ∠Д=90°, АС-биссектриса ∠А.
1)Т.к АС-биссектриса, то ∠САД=∠САВ.
2)Т.к. АД║ВС ( основания трапеции), АС-секущая, то ∠ДАС=∠ВСА , как накрест лежащие. Значит в ΔАСВ есть два равных угла по 22,5° ⇒ ΔАСВ-равнобедренный и ВС=ВА=4√2.
3)Пусть ВК⊥АД, тогда ΔВКА-прямоугольный и равнобедренный , т.к. ∠КВА=90°-45°=45°. Обозначим равные катеты через х. По т. Пифагора :х²+х²=(4√2)², 2х²=16*2, х=4, КА=ВК=4.
3)Т.к. ВК⊥АД, то ДК=4√2.
4)ΔДВК-прямоугольный, по т. Пифагора ДВ²=КВ²+КД²,
ДВ²=16+16*2,
ДВ²=3*16
ДВ=4√3