1)Розглянемо трикутник CPM:<P=90°,<C=20°=> <M=70°.
У трикутнику KPA:<P=90°,<K=70°=> <A=20°.
За теоремою про паралельні прямі <C=<A=20°=>CM||AK.
4)1. Будуємо перпендикуляр;
2. Будуємо кут;
3.Від одного променя кута будуємо гіпотенузу;
4.Візьми кут 45°! Виміряємо кут з верхньої вершини гіпотенузи, також 45°;
5.Будуємо катети.
3) EH—бісектриса, тому <MEH=<AEH=30°. За властивістю катета, який лежить напроти кута 30°:EH=MH*2=6*2=12(см). Розглянемо трикутник EHA: за властивістю рівнобедреного трикутника(кут при основі рівні <AEH=<EAH=30°):EH=AH=12см.
AM=MH+AH=6+12=18(см).
2)<KEM=180°-(<MKE+<KME) ?
не знаю, как-то так
Отрезок KF является средней линией треугольника АВД(по условию). Следовательно треугольники АВД и АКF подобны. Тогда АВ/АК=ВД/KF. То есть 2/1=ВД/6. Отсюда ВД=12. Обозначим ДС=Х, тогда по условию ВД/ДС=3/2. Или 12/X=3/2. Отсюда Х=ДС=8, Тогда ВС=ВД+ДС=12+8=20. Угол АДВ=180-100=80. Поскольку треугольники АВД и АКF подобны угол АFК=АДВ=80. Интересно отметить, что эти значения(KF и ВД) сохраняются при любых АВ и АС.