Итак, нам нужно найти угол между прямой SA и (SBD)?
Давай произведем для начало описание самой задачи(что в ней вообще происходит и какой именно угол нам необходимо найти.
Пусть точка О-является центром основания правильного 4-ехугольника ABCD(квадрата), точка K-середина ребра BS
ΔSOK-является прямоугольным, SO⊥OK,OK⊥(SBD) , т.к OK⊥BC, а BC⊂(SBD),SA⊥(ABCD),SA⊥SC.
Итак, мы выяснили, что SA⊥SC,CK⊥(SBD )⇒ ∠SCK-искомый линейный угол
OK=1/2AB=1/2*1=0,5
SK-высота ΔSBC,то есть SK=√3/2(по формуле равностороннего треугольника)
cos∠SKC=OK/SB=0,5/(√3/2)=1/√3=√3/3
α=arccos√3/3 или
sin∠SKC=SC/KC=√1/3
α=arcsin√1/3
1
Не ощущается людьми, фиксируется приборами
2
Фиксируется приборами, ощущается в отдельных случаях людьми, находящимися в спокойном состоянии, и на верхних этажах зданий
3
Колебания отмечаются немногими людьми
4
Колебания отмечаются многими людьми, возможно дребезжание стёкол
5
Колебания отмечаются даже на улице, многие спящие просыпаются, отдельные предметы раскачиваются
6
В зданиях появляются трещины
7
Трещины в штукатурке и в стенах, люди в панике покидают дома. Возможно падение тяжелых предметов
8
Большие трещины в стенах, падение карнизов и дымовых труб
9
Обвалы в некоторых зданиях.
10
Трещины в грунте (шириной до 1 м.) Обвалы во многих зданиях, полное разрушение старых построек
11
Многочисленные трещины на поверхности земли, обвалы в горах. Разрушение зданий
12
Полное разрушение всех сооружений, серьёзные изменения в рельефе
Если из точки, с которой проведены перпендикуляры к сторонам многоугольника провести еще и прямые соединяющие концы сторон многоугольника, то мы получим n-теугольников. Площадь одного такого треугольника равна
(1/2)*l*a, где l – перпендикуляр к стороне многоугольника, а а-сторона многоугольника.
Сложив площади всех треугольников, мы получим площадь многоугольника S=(n/2)*(l1+l2+… +ln)*a
С другой стороны, площадь многоугольника вписанного в окружность равна
S=r*n*a/2
То есть
(n/2)*(l1+l2+… +ln)*a= r*n*a/2
То есть
(l1+l2+… +ln)*a= r*a
Что и надо было доказать
Угол между прямой SA и плоскостью SBD равен линейному углу между прямой SA и её проекцией на плоскость SBD.
Прямая SA лежит в плоскости АSС, которая перпендикулярна плоскости SBD. Линия пересечения этих плоскостей - высота пирамиды SО и есть проекцией прямой SA на плоскость SBD.
Угол АSС равен 90 градусов (квадраты боковых сторон равны квадрату основания), а искомый угол равен половине этого угла.
ответ: угол между прямой SA и плоскостью SBD равен 45 градусов.