М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
МиллкаВах
МиллкаВах
25.12.2022 11:37 •  Информатика

Дайте определение одному из 5-ти терминов (на выбор): а) технология; б) кибернетика; в) сингулярность; г) абстракция; д) алгоритм.​

👇
Ответ:
tasapetrova
tasapetrova
25.12.2022

Технология -Совокупность процессов обработки или переработки материалов в определённой отрасли производства, а также научное описание производства.

4,5(23 оценок)
Открыть все ответы
Ответ:
sanya1897p08pyj
sanya1897p08pyj
25.12.2022

Рассмотрим следующую задачу. В обороте находятся банкноты k различных номиналов: a1, a2, ..., ak рублей. Банкомат должен выдать сумму в N рублей при минимального количества банкнот или сообщить, что запрашиваемую сумму выдать нельзя. Будем считать, что запасы банкнот каждого номинала неограничены.

Рассмотрим такой алгоритм: будем выдавать банкноты наибольшего номинала, пока это возможно, затем переходим к следующему номиналу. Например, если имеются банкноты в 10, 50, 100, 500, 1000 рублей, то при N = 740 рублей такой алгоритм выдаст банкноты в 500, 100, 100, 10, 10, 10, 10 рублей. Подобные алгоритмы называют «жадными», поскольку каждый раз при принятии решения выбирается тот вариант, который кажется наилучшим в данной ситуации (чтобы использовать наименьшее число банкнот каждый раз выбирается наибольшая из возможных банкнот).

Но для решения данной задачи в общем случае жадный алгоритм оказывается неприменимым. Например, если есть банкноты номиналом в 10, 60 и 100 рублей, то при N = 120 жадный алгоритм выдаст три банкноты: 100 + 10 + 10, хотя есть использующий две банкноты: 60 + 60. А если номиналов банкнот только два: 60 и 100 рублей, то жадный алгоритм вообще не сможет найти решения.

Но эту задачу можно решить при метода динамического программирования. Пусть F(n) -- минимальное количество банкнот, которым можно заплатить сумму в n рублей. Очевидно, что F(0) = 0, F(a1) = F(a2) =...= F(ak) = 1. Если некоторую сумму n невозможно выдать, будем считать, что F(n) = $ \infty$ (бесконечность).

Выведем рекуррентную формулу для F(n), считая, что значения F(0), F(1), ..., F(n - 1) уже вычислены. Как можно выдать сумму n? Мы можем выдать сумму n - a1, а потом добавить одну банкноту номиналом a1. Тогда нам понадобится F(n - a1) + 1 банкнота. Можем выдать сумму n - a2 и добавить одну банкноту номиналом a2, для такого понадобится F(n - a2) + 1 банкнота и т. д. Из всевозможных выберем наилучший, то есть:

F(n) = min(F(n - a1), F(n - a2),..., F(n - ak)) + 1.

Теперь заведем массив F[n+1], который будем последовательно заполнять значениями выписанного рекуррентного соотношения. Будем предполагать, что количество номиналов банкнот хранится в переменной int k, а сами номиналы хранятся в массиве int a[k].

const int INF=1000000000; // Значение константы }бесконечность}

int F[n+1];

F[0]=0;

int m, i;

for(m=1; m<=n; ++m) // заполняем массив F

{ // m - сумма, которую нужно выдать

F[m]=INF; // помечаем, что сумму m выдать нельзя

for(i=0; i<k; ++i) // перебираем все номиналы банкнот

{

if(m>=a[i] && F[m-a[i]]+1<F[m])

F[m] = F[m-a[i]]+1; // изменяем значение F[m], если нашли

} // лучший выдать сумму m

}

После окончания этого алгоритма в элементе F[n] будет храниться минимальное количество банкнот, необходимых, чтобы выдать сумму n. Как теперь вывести представление суммы n при банкнот? Опять рассмотрим все номиналы банкнот и значения n - a1, n - a2, ..., n - ak. Если для какого-то i окажется, что F(n - ai) = F(n) - 1, значит, мы можем выдать банкноту в ai рублей и после этого свести задачу к выдаче суммы n - ai, и так будем продолжать этот процесс, пока величина выдаваемой суммы не станет равна 0:

if (F[n]==INF)

cout<<"Требуемую сумму выдать невозможно"<<endl;

else

while(n>0)

for(i=0;i<k;++i)

if (F[n-a[i]]==F[n]-1)

{

cout<<a[i]<<" ";

n-=a[i];

break;

}

не удаляйте это

4,6(34 оценок)
Ответ:
EkaterinaZeyb
EkaterinaZeyb
25.12.2022
Вариант решения №1:
1)8 МБайт = 8192 КБайт
2) 8192 Кбайт / 4096 Кбайт = 2 - это отношение первого файла,которое мы передавали к второму. Тем самым решение получается из этого таким образом:

Первый файл больше второго в 2 раза. При неизменяемой скорости, второй файл соответственно будет передан в 2 раза быстрее -> 128/2 = 64 сек.

Вариант решения №2:
1) 8 МБайт = 8192 КБайт
2) найдём скорость соединения:

8192 Кбайт / 128 сек = 64 Кб/сек.

3) узнаем время передачи второго файла

4096 Кбайт / 64 Кб/сек = 64 сек.

ОТВЕТ : 64 сек.

Отмечу,что при решении похожих задач некоторые при переводе скорости и других местах вместо 1024 считают как 1000. Из-а этого в решении могут появиться такие ответы (для данной задачи) как 65,536 сек.

Обращайте внимание на то,с какой буквы написана величина! КБ=КБайт = 1024 байт. Если первая заглавная,то считается 2 в степени, то есть как принято в информатике.
кБайт = 1000 байт. Если с маленькой,то приставка кило считается по системе СИ, как в физике и является 10^3.
4,4(77 оценок)
Новые ответы от MOGZ: Информатика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ