М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
мартина
мартина
19.09.2021 01:22 •  Информатика

-(1+0)^(0+0)+1
Решение пошагово

👇
Ответ:
dzharullaev2015
dzharullaev2015
19.09.2021

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m - любые действительные числа. Тогда

1) an am = an+m

2) anam=an−manam=an−m

3) (an)m = anm

4) (ab)n = an bn

5) (ab)n=anbn(ab)n=anbn

6) an > 0

7) an > 1, если a > 1, n > 0

8) an < am, если a > 1, n < m

9) an > am, если 0< a < 1, n < m

В практике часто используются функции вида y = ax, где a - заданное положительное число, x - переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = ax, где а — заданное число, a > 0, a≠1a≠1

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.

Это свойство следует из того, что степень ax где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.

Чтобы убедиться в этом, нужно показать, что уравнение ax = b, где а > 0, a≠1a≠1, не имеет корней, если b⩽0b⩽0, и имеет корень при любом b > 0.

3) Показательная функция у = ax является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 < a < 1.

Это следует из свойств степени (8) и (9)

Построим графики показательных функций у = ax при a > 0 и при 0 < a < 1.

Использовав рассмотренные свойства отметим, что график функции у = ax при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.

Если х < 0 и |х| увеличивается, то график быстро приближается к оси Oх (но не пересекает её). Таким образом, ось Ох является горизонтальной асимптотой графика функции у = ax при a > 0.

Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = ax при 0 < a < 1 также проходит через точку (0; 1) и расположен выше оси Ох.

Если х > 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.

Если х < 0 и |х| увеличивается, то график быстро поднимается вверх.

 

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения ax = ab где а > 0, a≠1a≠1, х — неизвестное. Это уравнение решается с свойства степени: степени с одинаковым основанием а > 0, a≠1a≠1 равны тогда и только тогда, когда равны их показатели.

Решить уравнение 23x • 3x = 576

Так как 23x = (23)x = 8x, 576 = 242, то уравнение можно записать в виде 8x • 3x = 242, или в виде 24x = 242, откуда х = 2.

ответ х = 2

Решить уравнение 3х + 1 - 2 • 3x - 2 = 25

Вынося в левой части за скобки общий множитель 3х - 2, получаем 3х - 2(33 - 2) = 25, 3х - 2 • 25 = 25,

откуда 3х - 2 = 1, x - 2 = 0, x = 2

ответ х = 2

Решить уравнение 3х = 7х

Так как 7x≠07x≠0 , то уравнение можно записать в виде 3x7x=13x7x=1, откуда (37)x=1(37)x=1, х = 0

ответ х = 0

Решить уравнение 9х - 4 • 3х - 45 = 0

Заменой 3х = t данное уравнение сводится к квадратному уравнению t2 - 4t - 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3х = 9, 3х = -5.

Уравнение 3х = 9 имеет корень х = 2, а уравнение 3х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.

ответ х = 2

Решить уравнение 3 • 2х + 1 + 2 • 5x - 2 = 5х + 2х - 2

Запишем уравнение в виде

3 • 2х + 1 - 2x - 2 = 5х - 2 • 5х - 2, откуда

2х - 2 (3 • 23 - 1) = 5х - 2( 5 2 - 2 )

2х - 2 • 23 = 5х - 2• 23

(25)x−2=1(25)x−2=1

x - 2 = 0

ответ х = 2

Решить уравнение 3|х - 1| = 3|х + 3|

Так как 3 > 0, 3≠13≠1, то исходное уравнение равносильно уравнению |x-1| = |x+3|

Возводя это уравнение в квадрат, получаем его следствие (х - 1)2 = (х + 3)2, откуда

х2 - 2х + 1 = х2 + 6х + 9, 8x = -8, х = -1

Проверка показывает, что х = -1 — корень исходного уравнения.

ответ х = -1

 

Объяснение:

вот это правильно

4,4(85 оценок)
Открыть все ответы
Ответ:
ххх49
ххх49
19.09.2021
Моде́ль (фр. modèle, от лат. modulus — мера, аналог, образец) — отображение, копия, схема, макет, изображение, некоторый материальный или мысленно представляемый объект или явление, замещающий упрощением оригинальный объект или явление, сохраняя только некоторые важные его свойства, например, в процессе познания (созерцания, анализа и синтеза) или конструирования. Другими словами, модель — это объект или явление, аналогичные, то есть, в достаточной степени повторяющие свойства моделируемого объекта или явления (прототипа) , существенные для целей конкретного моделирования, и опускающие несущественные свойства, в которых они могут отличаться от прототипа.
4,5(4 оценок)
Ответ:
leogorec06
leogorec06
19.09.2021
А) Program cifr;
Uses crt;
var n,l:integer; s:string;
Begin
read(n);
str(n,s);
l:=length(s);
  if (s[1]<>s[2]) and (s[2]<>s[3]) and (s[1]<>s[3])
    then begin writeln('Одинаковых цифр нет') end
    else writeln('Одинаковые цифры присутствуют');
end.

Б) Program Stroke;
Uses Crt;
Var s: string; n,i,j,l: integer;
Begin
  ReadLn(n);
  str(n,s);
  l:=length(s);
  j:=0;
for i := 1 to l div 2 do begin
  if s[i]=s[length(s)-i+1]
    then j:=1 end;
if j=1 then 
    writeln('Да, число является палиндромом')
    else writeln('Нет, число не является палиндромом');
End.
4,5(71 оценок)
Это интересно:
Новые ответы от MOGZ: Информатика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ