Комбинаторные алгоритмы предназначены для выполнения вычис-
лений на различного рода объектах, возникающих в прикладных ком-
бинаторных задачах и при исследовании дискретных математических
структур. Необходимость разработки эффективных, быстрых комби-
наторных алгоритмов уже давно не вызывает сомнений. На практике
нужны не алгоритмы, а хорошие алгоритмы в широком смыс-
ле. Одним из основных критериев качества алгоритма является время,
необходимое для его выполнения.
Разработке и анализу вычислительной сложности комбинаторных
алгоритмов над классическими комбинаторными объектами посвящено
настоящее учебное пособие. Наряду с теоретическими знаниями даётся
описание таких важнейших алгоритмов, приводится их строгое обосно-
вание и детально изучается асимптотическая сложность рассматривае-
мых алгоритмов. Мы познакомим читателя с широким кругом понятий
и сведений из дискретной математики, необходимых практикующему
программисту. Пополним запас примеров нетривиальных алгоритмов
над объектами дискретной математики существенно обо-
гатить навыки самостоятельного конструирования алгоритмов и сфор-
мировать мышление, позволяющее использовать методы дискретного
анализа при разработке эффективных алгоритмов для решения прак-
тических задач и оценке их сложности.
Для понимания материала учебного пособия требуется знание ос-
новных понятий и фактов из дискретной математики и математической
логики. Читатель должен обладать минимальным опытом программи-
рования, каждый изучаемый алгоритм снабжен понятным псевдокодом,
позволяющим реализовать рассматриваемый алгоритм на доступном
языке программирования. При изучении отдельных тем используются
основы математического анализа и теории вероятностей.
#include <conio.h>
#include <stdlib.h>
#include <ctime>
main()
{
int b=0,a[40],k=40,i;
srand(time(0));
for (i=0;i<k;i++){
a[i]=rand()% 21;
printf("%3d",a[i]);
}
for (i=0;i<k;i++){
if ((a[i]%3)==0){
b+=a[i];
}
}
printf("\n%d",b);
getch();
}