Чертёж дан во вложении. Пусть ΔABC - равнобедренный, АВ = с - его основание, АС = ВС = b - боковые стороны. По условию треугольник симметричен относительно горизонтальной оси, так что его основание АВ должно быть перпендикулярно горизонтальной оси и при этом АО = ОВ, а вершина С попадет на горизонтальную ось. Разместим ΔABC так, чтобы основание попало на вертикальную ось. Окружность, описанная вокруг треугольника, пройдет через все три его вершины. Точка М - центр описанной окружности, - лежит на пересечении перпендикуляров, проведенных из середин сторон треугольника. Поскольку ΔABC равнобедренный, то ОС - его высота и отрезок МС, равный радиусу окружности R, также лежит на горизонтальной оси. Найдем высоту ОС, обозначив её через h, по теореме Пифагора. ОС - это катет ΔAOC, AO ⊥ OC. Площадь ΔABC находим по формуле Для нахождения радиуса R = MC рассмотрим прямоугольные ΔAOC и ΔMDC, имеющие общий угол АСО = α Теперь легко сделать необходимое построение. Для этого откладываем от начала координат по горизонтальной оси отрезок ОМ и проводим из него, как из центра, окружность радиуса R. Соединяем между собой три точки пересечения окружностью осей координат и получаем треугольник с длинами сторон, равными заданным.
Ниже приводится программа на языке Microsoft QBasic, позволяющая рассчитать длину отрезка ОМ (Mx - координату х точки М) и радиус описанной окружности R по заданной длине основания с и длине боковой стороны b.
INPUT "Основание: ", c INPUT "Боковая сторона: ", b h = SQR(b ^ 2 - (c / 2) ^ 2) R = b ^ 2 / (2 * h) Mx = h - R PRINT "Радиус равен "; R, "Координата центра равна "; Mx
Тестовое решение: Y:\qbasic>QBASIC.EXE Основание: 6 Боковая сторона: 5 Радиус равен 3.125 Координата центра равна .875
Все модели можно разбить на два больших класса: модели предметные (материальные) и модели информационные. Предметные модели воспроизводят геометрические, физические и другие свойства объектов в материальной форме (глобус, анатомические муляжи, модели кристаллических решеток, макеты зданий и сооружений и др.) . Информационные модели представляют объекты и процессы в образной или знаковой форме. Образные модели (рисунки, фотографии и др. ) представляют собой зрительные образы объектов, зафиксированные на каком-либо носителе информации (бумаге, фото- и кинопленке и др.) . Широко используются образные информационные модели в образовании (вспомните учебные плакаты по различным предметам) и науке, где требуется классификация объектов по их внешним признакам (в ботанике, биологии, палеонтологии и др.) . Знаковые информационные модели строятся с использованием различных языков (знаковых систем) . Знаковая информационная модель может быть представлена в форме текста (например, программы на языке программирования) , формулы (например, второго закона Ньютона F=m·a), таблицы (например, периодической таблицы элементов Д. И. Менделеева) и так далее. Иногда при построении знаковых информационных моделей используются одновременно несколько различных языков. Примерами таких моделей могут служить географические карты, графики, диаграммы и пр. Во всех этих моделях используются одновременно как язык графических элементов, так и на протяжении своей истории человечество использовало различные и инструменты для создания информационных моделей. Эти постоянно совершенствовались. Так, первые информационные модели создавались в форме наскальных рисунков, в настоящее же время информационные модели обычно строятся и исследуются с использованием современных компьютерных технологий.
Пусть ΔABC - равнобедренный, АВ = с - его основание, АС = ВС = b - боковые стороны. По условию треугольник симметричен относительно горизонтальной оси, так что его основание АВ должно быть перпендикулярно горизонтальной оси и при этом АО = ОВ, а вершина С попадет на горизонтальную ось. Разместим ΔABC так, чтобы основание попало на вертикальную ось.
Окружность, описанная вокруг треугольника, пройдет через все три его вершины. Точка М - центр описанной окружности, - лежит на пересечении перпендикуляров, проведенных из середин сторон треугольника. Поскольку ΔABC равнобедренный, то ОС - его высота и отрезок МС, равный радиусу окружности R, также лежит на горизонтальной оси.
Найдем высоту ОС, обозначив её через h, по теореме Пифагора.
ОС - это катет ΔAOC, AO ⊥ OC.
Площадь ΔABC находим по формуле
Для нахождения радиуса R = MC рассмотрим прямоугольные ΔAOC и ΔMDC, имеющие общий угол АСО = α
Теперь легко сделать необходимое построение.
Для этого откладываем от начала координат по горизонтальной оси отрезок ОМ и проводим из него, как из центра, окружность радиуса R. Соединяем между собой три точки пересечения окружностью осей координат и получаем треугольник с длинами сторон, равными заданным.
Ниже приводится программа на языке Microsoft QBasic, позволяющая рассчитать длину отрезка ОМ (Mx - координату х точки М) и радиус описанной окружности R по заданной длине основания с и длине боковой стороны b.
INPUT "Основание: ", c
INPUT "Боковая сторона: ", b
h = SQR(b ^ 2 - (c / 2) ^ 2)
R = b ^ 2 / (2 * h)
Mx = h - R
PRINT "Радиус равен "; R, "Координата центра равна "; Mx
Тестовое решение:
Y:\qbasic>QBASIC.EXE
Основание: 6
Боковая сторона: 5
Радиус равен 3.125 Координата центра равна .875
Чтобы продолжить, нажмите любую клавишу