Объяснение:
1.
a = 3
b = 15
c = 7
I - ?
K = a*b*c=3*15*7 = 315 символов
Если информационный вес i = 8 бит, то
I = k*i
I = 315*8 бит = 315 байтов
ответ: Объём в 315 байтов займёт текст в оперативной памяти.
2. Решение:
1. Количество точек -225
2. Так как всего 2 цвета черный и белый. то глубина цвета равна 1 ( 2^1 =2)
3. Объем видеопамяти равен 225*1=225 бит
3. V=2Int,где 2-стерео,I - разрядность карты, n - частота дискретизации, t - время звучания.
Значит V=2*8*1000*3=48 000 бит,делим на 8, это 6000, а затем на 1024 - 5,86 Кбайт
4. Для хранения информации об одной точке необходимо 4 бита. Так как 16= 2^4. найдем общее количество бит:
64*32*4=8192 бит
В байтах получим 8192/8 = 1024 байт
Відповідь:
без css ето не сделать
<head>
<style>
th{
background-color: rgba(134, 221, 3, 0.623);
border: 1 solid black;
padding: 20px;
}
td{
border: 3 solid black;
padding: 20px;
background-color: white;
}
table{
width: 10%;
height: 10%;
background-color: rgb(221, 221, 221);
}
.x{
background-color: rgba(134, 221, 3, 0.623);
text-align: center;
}
</style>
</head>
<body>
<table>
<tr>
<td class="x">x</td>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<th></th>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</table>
</body>
Пояснення:
{константы десятиточечного метода Гаусса}
g10c1 = 0.9739065285 / 6.2012983932;
g10c2 = 0.8650633667 / 6.2012983932;
g10c3 = 0.6794095683 / 6.2012983932;
g10c4 = 0.4333953941 / 6.2012983932;
g10c5 = 0.1488743390 / 6.2012983932;
g10x1 = 0.0666713443 / 6.2012983932;
g10x2 = 0.1494513492 / 6.2012983932;
g10x3 = 0.2190863625 / 6.2012983932;
g10x4 = 0.2692667193 / 6.2012983932;
g10x5 = 0.2955242247 / 6.2012983932;
function f(x: real): real;
begin
f := x * sqr(1 - x)
end;
function gsc(a, b: real): real;
{получение суммы для метода Гаусса}
var
p, q, s, s1, s2, s3, s4, s5: real;
begin
p := (b + a) / 2; q := (b - a) / 2;
s1 := g10c1 * (f(p + q * g10x1) + f(p - q * g10x1));
s2 := g10c2 * (f(p + q * g10x2) + f(p - q * g10x2));
s3 := g10c3 * (f(p + q * g10x3) + f(p - q * g10x3));
s4 := g10c4 * (f(p + q * g10x4) + f(p - q * g10x4));
s5 := g10c5 * (f(p + q * g10x5) + f(p - q * g10x5));
s := s1 + s2 + s3 + s4 + s5;
Result := s * (b - a)
end;
function Gauss(a, b, eps, gs: real): real;
{рекурсивная ф-ция подсчета с заданной точностью eps}
{gs - интеграл на (a,b), получать заранее}
var
m, ia, ib: real;
begin
m := (a + b) / 2;
ia := gsc(a, m);
ib := gsc(m, b);
if abs(ia + ib - gs) > eps then
begin
ia := gauss(a, m, eps / 2, ia); {рекурсия для первой половинки}
ib := gauss(m, b, eps / 2, ib){рекурсия для второй половинки}
end;
Result := ia + ib
end;
function Intg(a, b, eps: real): real;
begin
Result := Gauss(a, b, eps, gsc(a, b));
end;
var
a, b, eps, y1, y2: real;
begin
a := 0;
b := 1;
eps := 1e-6;
y1 := Intg(a, b, eps);
y2:=sqr(b)*(sqr(b)/4-2*b/3+0.5);
writeln('Значение интеграла по методу Гаусса: ', y1:0:8);
writeln('Значение интеграла по формуле: ', y2:0:8);
writeln('Абсолютная погрешность составляет: ', abs(y2-y1):0:8);
writeln('Относительная погрешность составляет: ', abs((y2-y1)/y1)*100:0:6,'%');
end.
Тестовое решение:
Значение интеграла по методу Гаусса: 0.08333337
Значение интеграла по формуле: 0.08333333
Абсолютная погрешность составляет: 0.00000004
Относительная погрешность составляет: 0.000044%