1. нумеруешь все цифры двоичного числа справа налево начиная нумерацию с 0 2. для всех позиций на которых стоят 1 вычисляешь соответствующую степень двойки (зависит от нумерации) 3. складываешь все вычисленные степени двойки и получаешь искомое десятичное число. Например, 1101 это 8+4+1=13. из 10 в 2: 1. делишь число на 2 и записываешь остатки от деления. Деление продолжаешь пока не получишь 0 2. записываешь остатки от деления в обратном порядке их нахождения Например, для числа 25: 25 | 1 12 | 0 6 | 0 3 | 1 1 | 1 получаем в двоичной 11001
1 задание) ответ: 1323141; Двигаемся в обратном порядке 2324142 (идём с конца) ей противоположные 1323141 2 задание) ответ: 2949; мы должны получить 11 и 13 причем минимально . можем только так 9+2 и 9+4 . значит 2949 3 задание) ответ: 3; чтобы добраться до 21 нам нужно выполнить 1 команду 6 раз и 3 раза вторую , нас спрашивают про вторую пишем ответ 3 4 задание) ответ: 1; нам нужно число которое делится на 5 то есть 4 отпадает , и также нам нужно чтобы модуль разности был не более 2 и во втором и в третьем модуль разности больше 2 , остается 1. 5 задание) ответ: 1112221; Я всегда начинаю с обратного 57-56-28-14-7-6-5-4 собираем с конца 1112221
Таких систем исчисления всего две. Основание а = 9 и основание а =367, но в системе с основанием 367 проблематично записывать числа (символов не хватит). Если число 3306(10) в системе исчисления с основанием а заканчивается цифрой 3, то тогда число 3303 делится на основание системы а. Отсюда алгоритм поиска. Находим все делители числа 3303. 3303 = 3*1101 = 3*3*367. Число 367 - простое. Поэтому основаниями системы исчисления могут быть только 3, 9, 367. Основание =3 не подходит, так как по условию число должно заканчиваться на 3 -> основание больше 3. Остаются 9, 367.
2. для всех позиций на которых стоят 1 вычисляешь соответствующую степень двойки (зависит от нумерации)
3. складываешь все вычисленные степени двойки и получаешь искомое десятичное число. Например, 1101 это 8+4+1=13.
из 10 в 2:
1. делишь число на 2 и записываешь остатки от деления.
Деление продолжаешь пока не получишь 0
2. записываешь остатки от деления в обратном порядке их нахождения Например, для числа 25:
25 | 1
12 | 0
6 | 0
3 | 1
1 | 1
получаем в двоичной 11001
может быть есть и другие но нас учили именно так